Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 229, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393430

RESUMO

Human interferon (hINF) alpha 2b is clinically important pharmaceutical product included in combinatory therapy against chronic hepatitis C and B and complex therapy against several cancer diseases. Here, we created the genetic constructions, based on genome elements of potato virus X (PVX), carrying the infα2b gene for transient expression in plant cells. The created plasmid vector constructions were tested through Agrobacterium-mediated transient gene expression method in two plant species-Nicotiana benthamiana and Ocimum basilicum (sweet basil). Production of recombinant hINF alpha 2b was more efficient in N. benthamiana than that in O. basilicum plants. The average yield of hINF alpha 2b produced in N. benthamiana plants was 0.56 mg/g of fresh leaf weight (FW) or 6% of the total soluble cell proteins (TSP). The maximal level reached up to 1.2 mg/g FW or 9% TSP. We estimated that about 0.67 mg of hINF can be obtained from one N. benthamiana plant. The yield of hINF alpha 2b obtained with the PVX-based expression cassette was about 80 times higher than the yield of hINF alpha 2b obtained with a simple expression cassette in which the infα2b gene was controlled by the 35S promoter of cauliflower mosaic virus. KEY POINTS: • PVX-based expression vectors provide efficient transient expression of infα2b gene • N. benthamiana plants can produce human interferon alpha 2b at high levels • The yield of the hINF α2b reached up to 1.2 mg/g of fresh leaf weight.


Assuntos
Vetores Genéticos , Interferon-alfa , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferon-alfa/genética , Interferon-alfa/metabolismo , Nicotiana/genética , Regiões Promotoras Genéticas
2.
Plants (Basel) ; 10(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685995

RESUMO

Plant molecular farming has a great potential to produce valuable proteins. Transient expression technology provides high yields of recombinant proteins in greenhouse-grown plants, but every plant must be artificially agroinfiltrated, and open greenhouse systems are less controlled. Here, we propose to propagate agrobacteria-free plants with high-efficient long-term self-replicated transient gene expression in a well-controlled closed in vitro system. Nicotiana benthamiana plant tissue culture in vitro, with transient expression of recombinant GFP, was obtained through shoot induction from leaf explants infected by a PVX-based vector. The transient expression occurs in new tissues and regenerants due to the natural systemic distribution of viral RNA carrying the target gene. Gene silencing was delayed in plants grown in vitro, and GFP was detected in plants for five to six months. Agrobacteria-free, GFP-expressing plants can be micropropagated in vitro (avoiding an agroinfiltration step), "rejuvenated" through regeneration (maintaining culture for years), or transferred in soil. The mean GFP in the regenerants was 18% of the total soluble proteins (TSP) (0.52 mg/g of fresh leaf weight (FW). The highest value reached 47% TSP (2 mg/g FW). This study proposes a new method for recombinant protein production combining the advantages of transient expression technology and closed cultural systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA