Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 869422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558080

RESUMO

In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast-osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.


Assuntos
Reabsorção Óssea , Osteoclastos , Proteínas Morfogenéticas Ósseas/metabolismo , Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Humanos , Modelos Teóricos , Osteoclastos/metabolismo
2.
Int J Mol Med ; 47(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649802

RESUMO

The relationship between hemochromatosis and diabetes has been well established, as excessive iron deposition has been reported to result in impaired function of the endocrine and exocrine pancreas. Therefore, the objective of the present study was to analyze the effects of iron accumulation on the pancreata and glucose homeostasis in a bone morphogenetic protein 6­knockout (Bmp6­/­) mouse model of hemochromatosis. The sera and pancreatic tissues of wild­type (WT) and Bmp6­/­ mice (age, 3 and 10 months) were subjected to biochemical and histological analyses. In addition, 18F­fluorodeoxyglucose biodistribution was evaluated in the liver, muscle, heart, kidney and adipose tissue of both animal groups. The results demonstrated that 3­month­old Bmp6­/­ mice exhibited iron accumulation preferentially in the exocrine pancreas, with no signs of pancreatic injury or fibrosis. No changes were observed in the glucose metabolism, as pancreatic islet diameter, insulin and glucagon secretion, blood glucose levels and glucose uptake in the liver, muscle and adipose tissue remained comparable with those in the WT mice. Aging Bmp6­/­ mice presented with progressive iron deposits in the exocrine pancreas, leading to pancreatic degeneration and injury that was characterized by acinar atrophy, fibrosis and the infiltration of inflammatory cells. However, the aging mice exhibited unaltered blood glucose levels and islet structure, normal insulin secretion and moderately increased α­cell mass compared with those in the age­matched WT mice. Additionally, iron overload and pancreatic damage were not observed in the aging WT mice. These results supported a pathogenic role of iron overload in aging Bmp6­/­ mice leading to iron­induced exocrine pancreatic deficiency, whereas the endocrine pancreas retained normal function.


Assuntos
Células Acinares/patologia , Proteína Morfogenética Óssea 6/genética , Diabetes Mellitus/patologia , Hemocromatose/patologia , Sobrecarga de Ferro/patologia , Animais , Glicemia/análise , Modelos Animais de Doenças , Fibrose/patologia , Fluordesoxiglucose F18/farmacocinética , Glucose/metabolismo , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/lesões , Pâncreas/patologia , Tomografia por Emissão de Pósitrons
3.
JBMR Plus ; 3(5): e10085, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31131338

RESUMO

BMP2 and BMP7, which use bovine Achilles tendon-derived absorbable collagen sponge and bovine bone collagen as scaffold, respectively, have been approved as bone graft substitutes for orthopedic and dental indications. Here, we describe an osteoinductive autologous bone graft substitute (ABGS) that contains recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) scaffold. The ABGS is created as an injectable or implantable coagulum gel with rhBMP6 binding tightly to plasma proteins within fibrin meshwork, as examined by dot-blot assays, and is released slowly as an intact protein over 6 to 8 days, as assessed by ELISA. The biological activity of ABGS was examined in vivo in rats (Rattus norvegicus) and rabbits (Oryctolagus cuniculus). In a rat subcutaneous implant assay, ABGS induced endochondral bone formation, as observed by histology and micro-CT analyses. In the rabbit ulna segmental defect model, a reproducible and robust bone formation with complete bridging and restoration of the defect was observed, which is dose dependent, as determined by radiographs, micro-CT, and histological analyses. In ABGS, ABC scaffold provides a permissive environment for bone induction and contributes to the use of lower doses of rhBMP6 compared with BMP7 in bovine bone collagen as scaffold. The newly formed bone undergoes remodeling and establishes cortices uniformly that is restricted to implant site by bridging with host bone. In summary, ABC carrier containing rhBMP6 may serve as an osteoinductive autologous bone graft substitute for several orthopedic applications that include delayed and nonunion fractures, anterior and posterior lumbar interbody fusion, trauma, and nonunions associated with neurofibromatosis type I.

4.
Int Orthop ; 39(1): 161-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300398

RESUMO

PURPOSE: Iron overload accelerates bone loss in mice lacking the bone morphogenetic protein 6 (Bmp6) gene, which is the key endogenous regulator of hepcidin, iron homeostasis gene. We investigated involvement of other BMPs in preventing haemochromatosis and subsequent osteopenia in Bmp6-/- mice. METHODS: Iron-treated wild-type (WT) and Bmp6-/- mice were analysed for hepcidin messenger RNA (mRNA) and tissue and blood BMP levels by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry, Western blot, enzyme-linked immunosorbent assay (ELISA) and proximity extension assay. BMPs labeled with technetium-99m were used in pharmacokinetic studies. RESULTS: In WT mice, 4 h following iron challenge, liver Bmp6 and hepcidin expression were increased, while expression of other Bmps was not affected. In parallel, we provided the first evidence that BMP6 circulates in WT mice and that iron increased the BMP6 serum level and the specific liver uptake of (99m)Tc-BMP6. In Bmp6-/- mice, iron challenge led to blunted activation of liver Smad signaling and hepcidin expression with a delay of 24 h, associated with increased Bmp5 and Bmp7 expression and increased Bmp2, 4, 5 and 9 expression in the duodenum. Liver Bmp7 expression and increased circulating BMP9 eventually contributed to the late hepcidin response. This was further supported by exogenous BMP7 therapy resulting in an effective hepcidin expression followed by a rapid normalisation of plasma iron values and restored osteopenia in Bmp6-/- mice. CONCLUSION: In Bmp6-/- mice, iron activated endogenous compensatory mechanisms of other BMPs that were not sufficient for preventing hemochromatosis and bone loss. Administration of exogenous BMP7 was effective in correcting the plasma iron level and bone loss, indicating that BMP6 is an essential but not exclusive in vivo regulator of iron homeostasis.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Proteínas Morfogenéticas Ósseas/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hepcidinas/metabolismo , Homeostase/fisiologia , Imuno-Histoquímica , Ferro/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
5.
Int Orthop ; 38(9): 1979-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25030962

RESUMO

PURPOSE: Bone morphogenetic protein (BMP)-2 and -7 are used in patients with long-bone fractures, nonunions and spinal fusions. It is unknown whether their potential systemic bioavailability following local bone administration might affect skeletal metabolism. To answer this question, we examined effects of systemically administered BMP-2 and -7 on bone in a newly developed rat model with a low level of calciotropic hormones. METHODS: Removal of thyroid and parathyroid glands (TPTx) in rats resulted in a decreased level of calciotropic hormones and subsequent bone loss assessed by micro computed tomography (micro-CT) and measurement of serum bone formation and resorption markers, including osteocalcin, C-telopeptide, osteoprotegerin and receptor activator of nuclear factor kappa-B ligand. Results were complemented with in vitro studies on osteoblast and osteoclast activity by both BMP-2 and -7. The doses used were calculated from published pharmacodynamic studies and bioavailability results from preclinical BMP-2 and -7 studies. RESULTS: TPTx resulted in bone loss, which was restored by systemic administration of 10-70 µg/kg of BMP-2 and 10-250 µg/kg of BMP-7. BMP-2 showed a higher capacity for enhancing trabecular microarchitecture, whereas BMP-7 augmented trabecular thickness. In vitro experiments revealed that BMP-2 and -7 when uncoupled increased the number and activity of both osteoblasts and osteoclasts. CONCLUSIONS: Surprisingly, both BMP-2 and -7 showed an increased bone volume in an in vivo environment of low calciotropic hormones. Locally administered BMP-2 and -7 from bone devices might become partially available in circulation but will not mediate systemic bone loss.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 7/farmacologia , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas In Vitro , Modelos Animais , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Int Orthop ; 38(3): 635-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352822

RESUMO

PURPOSE: The purpose of this study was to revise the clinical use of commercial BMP2 (Infuse) and BMP7 (Osigraft) based bone devices and explore the mechanism of action and efficacy of low BMP6 doses in a novel whole blood biocompatible device OSTEOGROW. METHODS: Complications from the clinical use of BMP2 and BMP7 have been systemically reviewed in light of their role in bone remodeling. BMP6 function has been assessed in Bmp6-/- mice by µCT and skeletal histology, and has also been examined in mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and osteoclasts. Safety and efficacy of OSTEOGROW have been assessed in rats and rabbits. RESULTS: Clinical use issues of BMP2 and BMP7 have been ascribed to the limited understanding of their role in bone remodeling at the time of device development for clinical trials. BMP2 and BMP7 in bone devices significantly promote bone resorption leading to osteolysis at the endosteal surfaces, while in parallel stimulating exuberant bone formation in surrounding tissues. Unbound BMP2 and BMP7 in bone devices precipitate on the bovine collagen and cause inflammation and swelling. OSTEOGROW required small amounts of BMP6, applied in a biocompatible blood coagulum carrier, for stimulating differentiation of MSCs and accelerated healing of critical size bone defects in animals, without bone resorption and inflammation. BMP6 decreased the number of osteoclasts derived from HSC, while BMP2 and BMP7 increased their number. CONCLUSIONS: Current issues and challenges with commercial bone devices may be resolved by using novel BMP6 biocompatible device OSTEOGROW, which will be clinically tested in metaphyseal bone fractures, compartments where BMP2 and BMP7 have not been effective.


Assuntos
Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 6/uso terapêutico , Sistemas de Liberação de Medicamentos , Fraturas Ósseas/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/uso terapêutico , Proteína Morfogenética Óssea 6/administração & dosagem , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Relação Dose-Resposta a Droga , Fraturas Ósseas/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , Osteogênese/fisiologia , Coelhos , Ratos , Cicatrização/fisiologia
7.
Endocrinology ; 149(12): 6092-102, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18687772

RESUMO

Sevelamer hydrochloride, a noncalcium phosphate binder, has been shown to reduce coronary artery and aortic calcification, and to improve trabecular bone mineral density in hemodialysis patients with chronic kidney disease. Here, we examined whether sevelamer given orally for 12 wk with normal food could restore bone volume (BV) and strength in aged ovariectomized (OVX) rats starting at 4 wk after OVX. Dual-energy x-ray absorptiometry, microcomputerized tomography, and bone histomorphometry analyses showed that OVX animals receiving sevelamer had increased trabecular BV (51%), trabecular number (43%), trabecular thickness (9%), cortical thickness (16%), mineral apposition rate (103%), bone formation rate (25%), and enhanced cortical and trabecular bone mechanical strength as compared with OVX rats. Sevelamer decreased collagen C telopeptide, increased osteocalcin levels, and decreased phosphate and magnesium levels without affecting calcium levels in the blood. Although sevelamer was not absorbed systemically, it stimulated osteoblast differentiation in BM-derived mesenchymal stem cell cultures, as evaluated by alkaline phosphatase positive colony-forming units, and inhibited recombinant human soluble receptor activator of nuclear factor-kappaB ligand-induced osteoclast differentiation, as evaluated by tartrate-resistant acid phosphatase positive cells in bone mineral-hematopoietic stem cell cultures. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry analysis revealed that 69 proteins were differently expressed after OVX, of which 30% (20 of 69) were reversed to sham activity after sevelamer intake. PTH, fibroblast growth factor-23, and cytokine profile in serum were not significantly changed. Together, these results suggest that sevelamer in food increases the BV and improves biomechanical properties of bone in OVX rats.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Poliaminas/farmacologia , Animais , Fenômenos Biomecânicos , Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ovariectomia , Poliaminas/administração & dosagem , Ratos , Sevelamer , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA