Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
2.
Odontology ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703257

RESUMO

The present study aimed to elucidate the correlation between the uptake of 11C-methionine (MET) by a primary tumor and the survival of patients with oral squamous cell carcinoma (OSCC). This study enrolled 31 patients who underwent radical surgery for OSCC. The patients underwent pretreatment MET-positron emission tomography (PET) scanning. We analyzed correlations between the maximum standardized uptake value (SUVmax) of MET-PET in a primary tumor and the clinicopathological features. Further, we compared overall survival (OS), disease-specific survival (DSS), and loco-regional recurrence (LRR) rates between the two groups according to SUVmax of MET-PET. SUVmax of MET-PET in a primary tumor was higher in patients with advanced T-classification and advanced clinical stage, with significant differences (P = 0.001 and P = 0.016, respectively). The patients with SUVmax of MET-PET ≥ 4.4 showed significantly lower DSS rates and higher LRR rates than those with SUVmax of < 4.4 (P = 0.015 and P = 0.016, respectively). SUVmax of MET-PET and OS rates showed no significant correlation (P = 0.073). The present study revealed that SUVmax of MET-PET may predict clinical outcomes and prognosis in patients with OSCC who underwent radical surgery.

3.
Int J Pharm ; : 124193, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703934

RESUMO

Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.

4.
Nucl Med Biol ; 134-135: 108914, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38733873

RESUMO

INTRODUCTION: Reactive oxygen species (ROS) are attractive targets for clinical PET imaging. In this study, we hypothesized that PET imaging of ROS would be possible by using chelating ligands (L) that form stable complexes with copper (I) but not with copper (II), based on metabolic trapping. Namely, when [64Cu][CuI(L)2]+ is oxidized by ROS, the oxidized complex will release [64Cu]Cu2+. Then, the released [64Cu]Cu2+ will be trapped inside the cell, resulting in PET signal depending on the redox potential of ROS. To examine the potential of this novel molecular design for ROS imaging, we synthesized copper (I) complexes with bicinchoninic acid (BCA) disodium salt and bathocuproinedisulfonic acid (BCS) disodium salt and evaluated their reactivity with several kinds of ROS. In addition, the cellular uptake of [64Cu][CuI(BCS)2]3- and the stability of [64Cu][CuI(BCS)2]3- in a biological condition were also evaluated. METHODS: [64Cu]Cu2+ was reduced to [64Cu]Cu+ by ascorbic acid and coordinated with BCA and BCS in the acetate buffer to synthesize [64Cu][CuI(BCA)2]3- and [64Cu][CuI(BCS)2]3-. The radiochemical yields were determined by thin-layer chromatography (TLC). After [64Cu][CuI(BCS)2]3- was incubated with hydroxyl radical, lipid peroxide, superoxide, and hydrogen peroxide, the percentage of released [64Cu]Cu2+ from the parent complex was evaluated by TLC. HT-1080 human fibrosarcoma cells were treated with 0.1 % Dimethyl sulfoxide (control), imidazole ketone erastin (IKE), or IKE + ferrostatin-1 (Fer-1). Then, the uptake of [64Cu][CuI(BCS)2]3- to HT-1080 cells in each group was evaluated as %Dose/mg protein. Lastly, [64Cu][CuI(BCS)2]3- was incubated in human plasma, and its intact ratio was determined by TLC. RESULTS: The radiochemical yield of [64Cu][CuI(BCS)2]3- (86 ± 1 %) was higher than that of [64Cu][CuI(BCA)2]3- (44 ± 3 %). [64Cu][CuI(BCA)2]3- was unstable and partially decomposed on TLC. After [64Cu][CuI(BCS)2]3- was reacted with hydroxyl radical, lipid peroxide, and superoxide, 67 ± 2 %, 44 ± 13 %, and 22 ± 3 % of total radioactivity was detected as [64Cu]Cu2+, respectively. On the other hand, the reaction with hydrogen peroxide did not significantly increase the ratio of [64Cu]Cu2+ (4 ± 1 %). These results suggest that [64Cu][CuI(BCS)2]3- could be used for detecting high-redox-potential ROS such as hydroxyl radical and lipid peroxide with high selectivity. The cellular uptake values of [64Cu][CuI(BCS)2]3- in the control, IKE, and Fer-1 group were 42 ± 2, 54 ± 2, and 47 ± 5 %Dose/mg protein (n = 3), respectively, suggesting the ROS specific uptake of [64Cu][CuI(BCS)2]3-. On the other hand, the intact ratio after the incubation of [64Cu][CuI(BCS)2]3- in human plasma was 9 ± 5 %. CONCLUSION: PET imaging of ROS would be possible by using a copper (I) selective ligand, based on metabolic trapping. Although improvement of the membrane permeability and the stability of copper (I) complexes is required, the present results pave the way for the development of novel 64Cu-labeled complexes for PET imaging of ROS.

5.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574976

RESUMO

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Assuntos
Estudos de Viabilidade , Fluordesoxiglucose F18 , Glucose , Imagem Multimodal , Oxirredução , Animais , Humanos , Camundongos , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Imagem Multimodal/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Butionina Sulfoximina/farmacologia , Autorradiografia , Células HCT116 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Glutationa/metabolismo , Camundongos Nus
6.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397083

RESUMO

Spinal cord injury (SCI) leads to devastating sequelae, demanding effective treatments. Recent advancements have unveiled the role of neutrophil extracellular traps (NETs) produced by infiltrated neutrophils in exacerbating secondary inflammation after SCI, making it a potential target for treatment intervention. Previous research has established that intravenous administration of stem cell-derived exosomes can mitigate injuries. While stem cell-derived exosomes have demonstrated the ability to modulate microglial reactions and enhance blood-brain barrier integrity, their impact on neutrophil deactivation, especially in the context of NETs, remains poorly understood. This study aims to investigate the effects of intravenous administration of MSC-derived exosomes, with a specific focus on NET formation, and to elucidate the associated molecular mechanisms. Exosomes were isolated from the cell supernatants of amnion-derived mesenchymal stem cells using the ultracentrifugation method. Spinal cord injuries were induced in Sprague-Dawley rats (9 weeks old) using a clip injury model, and 100 µg of exosomes in 1 mL of PBS or PBS alone were intravenously administered 24 h post-injury. Motor function was assessed serially for up to 28 days following the injury. On Day 3 and Day 28, spinal cord specimens were analyzed to evaluate the extent of injury and the formation of NETs. Flow cytometry was employed to examine the formation of circulating neutrophil NETs. Exogenous miRNA was electroporated into neutrophil to evaluate the effect of inflammatory NET formation. Finally, the biodistribution of exosomes was assessed using 64Cu-labeled exosomes in animal positron emission tomography (PET). Rats treated with exosomes exhibited a substantial improvement in motor function recovery and a reduction in injury size. Notably, there was a significant decrease in neutrophil infiltration and NET formation within the spinal cord, as well as a reduction in neutrophils forming NETs in the circulation. In vitro investigations indicated that exosomes accumulated in the vicinity of the nuclei of activated neutrophils, and neutrophils electroporated with the miR-125a-3p mimic exhibited a significantly diminished NET formation, while miR-125a-3p inhibitor reversed the effect. PET studies revealed that, although the majority of the transplanted exosomes were sequestered in the liver and spleen, a notably high quantity of exosomes was detected in the damaged spinal cord when compared to normal rats. MSC-derived exosomes play a pivotal role in alleviating spinal cord injury, in part through the deactivation of NET formation via miR-125a-3p.


Assuntos
Exossomos , Armadilhas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Exossomos/metabolismo , Armadilhas Extracelulares/metabolismo , Distribuição Tecidual , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Administração Intravenosa
7.
Mol Imaging Biol ; 25(4): 648-658, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37193805

RESUMO

PURPOSE: Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer phototherapy using an antibody-photosensitizer conjugate (Ab-IR700). By NIR light irradiation, Ab-IR700 forms a water-insoluble aggregation on the plasma membrane of cancer cells, leading to lethal membrane damage of cancer cells with high selectivity. However, IR700 produces singlet oxygen, which induces non-selective inflammatory responses such as edema in normal tissues around the tumor. Understanding such treatment-emergent responses is important to minimize side effects and improve clinical outcomes. Thus, in this study, we evaluated physiological responses during NIR-PIT by magnetic resonance imaging (MRI) and positron emission tomography (PET). PROCEDURES: Ab-IR700 was intravenously injected into tumor-bearing mice with two tumors on the right and left sides of the dorsum. At 24 h after injection, a tumor was irradiated with NIR light. Edema formation was examined by T1/T2/diffusion-weighted MRI and inflammation was investigated by PET with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Because inflammation can increase vascular permeability via inflammatory mediators, we evaluated changes in oxygen levels in tumors using a hypoxia imaging probe, [18F]fluoromisonidazole ([18F]FMISO). RESULTS: The uptake of [18F]FDG in the irradiated tumor was significantly decreased compared to the control tumor, indicating the impairment of glucose metabolism induced by NIR-PIT. MRI and [18F]FDG-PET images showed that inflammatory edema with [18F]FDG accumulation was present in the surrounding normal tissues of the irradiated tumor. Furthermore, [18F]FMISO accumulation in the center of the irradiated tumor was relatively low, indicating the enhancement of oxygen supply due to increased vascular permeability. In contrast, high [18F]FMISO accumulation was observed in the peripheral region, indicating enhancement of hypoxia in the region. This could be because inflammatory edema was formed in the surrounding normal tissues, which blocked blood flow to the tumor. CONCLUSIONS: We successfully monitored inflammatory edema and changes in oxygen levels during NIR-PIT. Our findings on the acute physiological responses after light irradiation will help to develop effective measures to minimize the side effects in NIR-PIT.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Fluordesoxiglucose F18 , Linhagem Celular Tumoral , Fototerapia/métodos , Imunoterapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia , Neoplasias/tratamento farmacológico
8.
Stem Cells Int ; 2022: 8521922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966129

RESUMO

Background: Due to the lack of effective therapies, stem cell transplantation is an anticipated treatment for chronic intracerebral hemorrhage (ICH), and higher cell survival and engraftment are considered to be the key for recovery. Mesenchymal stromal cells (MSCs) compounded with recombinant human collagen type I scaffolds (CellSaics) have a higher potential for cell survival and engraftment compared with solo-MSCs, and we investigated the validity of intracerebral transplantation of CellSaic in a chronic ICH model. Methods: Rat CellSaics (rCellSaics) were produced by rat bone marrow-derived MSC (rBMSCs). The secretion potential of neurotrophic factors and the cell proliferation rate were compared under oxygen-glucose deprivation (OGD) conditions. rCellSaics, rBMSCs, or saline were transplanted into the hollow cavity of a rat chronic ICH model. Functional and histological analyses were evaluated, and single-photon emission computed tomography for benzodiazepine receptors was performed to monitor sequential changes in neuronal integrity. Furthermore, human CellSaics (hCellSaics) were transplanted into a chronic ICH model in immunodeficient rats. Antibodies neutralizing brain-derived neurotrophic factor (BDNF) were used to elucidate its mode of action. Results: rCellSaics demonstrated a higher secretion potential of trophic factors and showed better cell proliferation in the OGD condition. Animals receiving rCellSaics displayed better neurological recovery, higher intracerebral BDNF, and better cell engraftment; they also showed a tendency for less brain atrophy and higher benzodiazepine receptor preservation. hCellSaics also promoted significant functional recovery, which was reversed by BDNF neutralization. Conclusion: Intracerebral transplantation of CellSaics enabled neurological recovery in a chronic ICH model and may be a good option for clinical application.

9.
Ann Nucl Med ; 36(11): 931-940, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35969311

RESUMO

OBJECTIVE: We previously reported that alterations of the tumor microenvironment (TME) by programmed death receptor-1 (PD1) blockade affected tumor glucose metabolism and tumor 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake. In cancer cells, high glycolysis allows cells to sustain rapid proliferation since glycolysis is closely related to the proliferation of cancer cells. Therefore, imaging of cellular proliferation may provide more detail of TME alterations. In this study, we investigated how TME alterations by PD1 blockade affects the uptake of 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), which is a 18F-radiolabeled thymidine derivative and is taken up by proliferating cells. METHODS: Mice inoculated with murine colon carcinoma CT26 cells were intraperitoneally administered an anti-PD1 antibody on Day 0, when the tumor volume exceeded 50 mm3, and Day 5. [18F]FLT-PET imaging was performed pre-treatment (Day 0) and post treatment (Day 7). Tumor infiltrating lymphocytes (TILs) were identified by flow cytometry. [18F]FLT accumulation and localization in tumor tissue was evaluated by autoradiography and immunohistochemistry. The cell-cycle distribution of tumors and CT26 cells exposed to cytokines (interleukin-2, interferon [INF]-γ, and tumor necrosis factor [TNF]-α) was analyzed by flow cytometry. RESULTS: PD1 blockade increased CD8+ and CD4+ T cells in tumor tissue and significantly suppressed tumor proliferation; however, tumor [18F]FLT uptake remained unchanged. Autoradiography and immunohistochemistry showed that [18F]FLT was mainly taken up by cancer cells, but not TILs. Flow cytometric analysis demonstrated that the population of cells in G2/M phase increased after PD1 blockade. Moreover, INF-γ and TNF-α significantly increased cells in G2/M phase in vitro. CONCLUSION: PD1 blockade-induced alteration of the TME increased CT26 tumor cells in the G2/M phase, which have high thymidine kinase 1 activity. Therefore, [18F]FLT is taken up by tumor cells even if tumor proliferation is suppressed. This observation may be useful for evaluating the response to immunotherapy.


Assuntos
Didesoxinucleosídeos , Fluordesoxiglucose F18 , Animais , Camundongos , Divisão Celular , Linhagem Celular Tumoral , Didesoxinucleosídeos/metabolismo , Modelos Animais de Doenças , Glucose , Interferons , Interleucina-2 , Receptores de Morte Celular , Timidina , Fator de Necrose Tumoral alfa
10.
Nucl Med Biol ; 108-109: 85-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367730

RESUMO

INTRODUCTION: Hypoxia is common in solid tumors and creates an immunosuppressive environment that leads to resistance to immunotherapy, such as an anti-programmed death receptor-1 (PD-1) therapy. It has been suggested that anti-PD-1 therapy may reduce tumor hypoxia by remodeling the tumor vasculature; however, it is unclear how anti-PD-1 therapy reduces hypoxia over time. Therefore, we investigated the relationship between hypoxia and immune activation by anti-PD-1 therapy in murine cancer models. METHODS: Anti-PD-1 antibody was injected to CT26- and MC38-tumor-bearing mice on days 0 and 5. Tumor hypoxia was non-invasively evaluated using positron emission tomography (PET) with [18F]fluoromisonidazole ([18F]FMISO) on days 3 and 7. Histological analysis was conducted to investigate the infiltration of immune cells in [18F]FMISO-accumulated hypoxic area. In addition, the immune cell population in tumors and the percentages of cancer and immune cells under hypoxic conditions were analyzed at single-cell level using flow cytometry. RESULTS: Flow cytometric analysis of CT26 tumors on day 3 showed that anti-PD-1 therapy reduced hypoxia without inhibition of tumor growth. In addition, the infiltration of CD8+ T cells was increased in treated tumors. In contrast to CT26 tumors, the percentage of hypoxic cells in MC38 tumors did not change on days 3 and 7, and there was minimal immune activation induced by anti-PD-1 antibody. Changes in hypoxia in CT26 tumors were not detected by [18F]FMISO-PET, but autoradiogram showed that [18F]FMISO accumulated in immunosuppressed areas, where the infiltration of immune cells was relatively low. CONCLUSION: Reduction of hypoxia was induced in CT26 tumor, in which adequate immune response to anti-PD-1 therapy was exhibited, at an early time point before suppression of tumor growth. Our findings suggest that anti-PD-1 therapy can create a tumor microenvironment that facilitates immune activation by reducing hypoxia.


Assuntos
Neoplasias , Hipóxia Tumoral , Animais , Linfócitos T CD8-Positivos , Hipóxia Celular , Hipóxia , Camundongos , Misonidazol/análogos & derivados , Nitroimidazóis , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral
11.
Eur J Nucl Med Mol Imaging ; 49(3): 821-833, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34468781

RESUMO

PURPOSE: Eribulin, an inhibitor of microtubule dynamics, is known to show antitumor effects through its remodeling activity in the tumor vasculature. However, the extent to which the improvement of tumor hypoxia by eribulin affects radio-sensitivity remains unclear. We utilized 1-(2,2-dihydroxymethyl-3-18F-fluoropropyl)-2-nitroimidazole (18F-DiFA), a new PET probe for hypoxia, to investigate the effects of eribulin on tumor hypoxia and evaluate the radio-sensitivity during eribulin treatment. METHODS: Mice bearing human breast cancer MDA-MB-231 cells or human lung cancer NCI-H1975 cells were administered a single dose of eribulin. After administration, mice were injected with 18F-DiFA and pimonidazole, and tumor hypoxia regions were analyzed. For the group that received combined treatment with radiation, 18F-DiFA PET/CT imaging was performed before tumors were locally X-irradiated. Tumor size was measured every other day after irradiation. RESULTS: Eribulin significantly reduced 18F-DiFA accumulation levels in a dose-dependent manner. Furthermore, the reduction in 18F-DiFA accumulation levels by eribulin was most significant 7 days after treatment. These results were also supported by reduction of the pimonidazole-positive hypoxic region. The combined treatment showed significant retardation of tumor growth in comparison with the control, radiation-alone, and drug-alone groups. Importantly, tumor growth after irradiation was inversely correlated with 18F-DiFA accumulation. CONCLUSION: These results demonstrated that 18F-DiFA PET/CT clearly detected eribulin-induced tumor oxygenation and that eribulin efficiently enhanced the antitumor activity of radiation by improving tumor oxygenation.


Assuntos
Furanos , Cetonas , Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hipóxia Tumoral , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos
12.
J Med Chem ; 64(21): 16008-16019, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730982

RESUMO

Multivalent RGD peptides have been used as an excellent targeting vector to integrin αvß3-positive tumors. However, little attention has been paid to the influence of linker molecules in multivalent RGD peptides on their dissociation kinetics from tumor cells. In this study, we evaluated the dissociation kinetics of 99mTc-labeled hexavalent RGD peptides which have (CH2-CH2-O)n (n = 4, [99mTc][Tc(L1)6]+ and n = 12, [99mTc][Tc(L2)6]+) or (DPro-Gly)n (n = 1, [99mTc][Tc(L3)6]+; n = 6, [99mTc][Tc(L4)6]+; and n = 9, [99mTc][Tc(L5)6]+) as a linker molecule. The results showed that [99mTc][Tc(L4)6]+ and [99mTc][Tc(L5)6]+ displayed slower dissociation kinetics and [99mTc][Tc(L4)6]+ showed exceptionally high in vitro cellular uptake (203.1 ± 16.7% dose/mg protein) and the highest tumor to blood ratio (138.1 ± 26.3 at 4 h p.i.) in tumor bearing nude mice. These findings indicate that the use of appropriate length of (DPro-Gly)n would maximize the binding of multivalent RGD peptides to clustered integrin αvß3.


Assuntos
Integrina alfaVbeta3/metabolismo , Neoplasias/metabolismo , Oligopeptídeos/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oligopeptídeos/farmacocinética , Compostos de Organotecnécio/sangue , Compostos de Organotecnécio/farmacocinética , Ligação Proteica , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Sci ; 112(10): 4246-4256, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34061417

RESUMO

We conducted a prospective multicenter trial to compare the usefulness of 11 C-methionine (MET) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for identifying tumor recurrence. Patients with clinically suspected tumor recurrence after radiotherapy underwent both 11 C-MET and 18 F-FDG PET. When a lesion showed a visually detected uptake of either tracer, it was surgically resected for histopathological analysis. Patients with a lesion negative to both tracers were revaluated by magnetic resonance imaging (MRI) at 3 months after the PET studies. The primary outcome measure was the sensitivity of each tracer in cases with histopathologically confirmed recurrence, as determined by the McNemar test. Sixty-one cases were enrolled, and 56 cases could be evaluated. The 38 cases where the lesions showed uptake of either 11 C-MET or 18 F-FDG underwent surgery; 32 of these cases were confirmed to be subject to recurrence. Eighteen cases where the lesions showed uptake of neither tracer received follow-up MRI; the lesion size increased in one of these cases. Among the cases with histologically confirmed recurrence, the sensitivities of 11 C-MET PET and 18 F-FDG PET were 0.97 (32/33, 95% confidence interval [CI]: 0.85-0.99) and 0.48 (16/33, 95% CI: 0.33-0.65), respectively, and the difference was statistically significant (P < .0001). The diagnostic accuracy of 11 C-MET PET was significantly better than that of 18 F-FDG PET (87.5% vs. 69.6%, P = .033). No examination-related adverse events were observed. The results of the study demonstrated that 11 C-MET PET was superior to 18 F-FDG PET for discriminating between tumor recurrence and radiation-induced necrosis.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Lesões por Radiação/diagnóstico por imagem , Adolescente , Adulto , Idoso , Encéfalo/patologia , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Radioisótopos de Carbono/farmacocinética , Criança , Intervalos de Confiança , Feminino , Fluordesoxiglucose F18/farmacocinética , Humanos , Japão , Imageamento por Ressonância Magnética , Masculino , Metionina/farmacocinética , Pessoa de Meia-Idade , Necrose , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Recidiva Local de Neoplasia/cirurgia , Estudos Prospectivos , Lesões por Radiação/patologia , Compostos Radiofarmacêuticos/farmacocinética , Fatores de Tempo , Adulto Jovem
14.
Biochem Biophys Rep ; 26: 100957, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33681481

RESUMO

Ferroptosis induction has been recognized as a novel cancer therapeutic strategy. To effectively apply ferroptosis-targeting cancer therapy to individual patients, a diagnostic indicator for selecting this therapeutic strategy from a number of molecular targeting drugs is needed. However, to date, methods that can predict the efficacy of ferroptosis-targeting treatment have not been established yet. In this study, we focused on the iron metabolic pathway to develop a nuclear imaging technique for diagnosing the susceptibility of cancer cells to ferroptosis. As a nuclear probe, human transferrin (Tf) was labeled with Gallium-68 (68Ga) using 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) as a chelator (68Ga-NOTA-Tf). Western blot assay and clonogenic survival assay with human renal cancer cell lines A498 and 786-O revealed that the protein expression level of transferrin receptor1 (TfR1) and sensitivity to a ferroptosis inducer, erastin, were correlated. A cellular uptake assay with 68Ga-NOTA-Tf revealed that the cancer cells sensitive to erastin highly internalized the 68Ga-NOTA-Tf. Furthermore, treatment with the TfR1 inhibitor ferristatin II reduced the cellular uptake of 68Ga-NOTA-Tf, indicating that the intracellular uptake of the probe was mediated by TfR1. These results suggest that 68Ga-NOTA-Tf can be useful in predicting the sensitivity of cancer cells to ferroptosis inducers.

15.
Diagnostics (Basel) ; 11(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525709

RESUMO

BACKGROUND: Positron emission tomography with 11C-methionine (MET) is well established in the diagnostic work-up of malignant brain tumors. Texture analysis is a novel technique for extracting information regarding relationships among surrounding voxels, in order to quantify their inhomogeneity. This study evaluated whether the texture analysis of MET uptake has prognostic value for patients with glioma. METHODS: We retrospectively analyzed adults with glioma who had undergone preoperative metabolic imaging at a single center. Tumors were delineated using a threshold of 1.3-fold of the mean standardized uptake value for the contralateral cortex, and then processed to calculate the texture features in glioma. RESULTS: The study included 42 patients (median age: 56 years). The World Health Organization classifications were grade II (7 patients), grade III (17 patients), and grade IV (18 patients). Sixteen (16.1%) all-cause deaths were recorded during the median follow-up of 18.8 months. The univariate analyses revealed that overall survival (OS) was associated with age (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.01-1.08, p = 0.0093), tumor grade (HR 3.64, 95% CI 1.63-9.63, p = 0.0010), genetic status (p < 0.0001), low gray-level run emphasis (LGRE, calculated from the gray-level run-length matrix) (HR 2.30 × 1011, 95% CI 737.11-4.23 × 1019, p = 0.0096), and correlation (calculated from the gray-level co-occurrence matrix) (HR 5.17, 95% CI 1.07-20.93, p = 0.041). The multivariate analyses revealed OS was independently associated with LGRE and correlation. The survival curves were also significantly different (both log-rank p < 0.05). CONCLUSION: Textural features obtained using preoperative MET positron emission tomography may compliment the semi-quantitative assessment for prognostication in glioma cases.

16.
Ann Nucl Med ; 35(3): 406-414, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492646

RESUMO

Breast positron emission tomography (PET) has had insurance coverage when performed with conventional whole-body PET in Japan since 2013. Together with whole-body PET, accurate examination of breast cancer and diagnosis of metastatic disease are possible, and are expected to contribute significantly to its treatment planning. To facilitate a safer, smoother, and more appropriate examination, the Japanese Society of Nuclear Medicine published the first edition of practice guidelines for high-resolution breast PET in 2013. Subsequently, new types of breast PET have been developed and their clinical usefulness clarified. Therefore, the guidelines for breast PET were revised in 2019. This article updates readers as to what is new in the second edition. This edition supports two different types of breast PET depending on the placement of the detector: the opposite-type (positron emission mammography; PEM) and the ring-shaped type (dedicated breast PET; dbPET), providing an overview of these scanners and appropriate imaging methods, their clinical applications, and future prospects. The name "dedicated breast PET" from the first edition is widely used to refer to ring-shaped type breast PET. In this edition, "breast PET" has been defined as a term that refers to both opposite- and ring-shaped devices. Up-to-date breast PET practice guidelines would help provide useful information for evidence-based breast imaging.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Guias de Prática Clínica como Assunto , Razão Sinal-Ruído , Humanos
17.
EJNMMI Res ; 11(1): 9, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33492449

RESUMO

BACKGROUND: [18F]Fluoromisonidazole ([18F]FMISO) is a PET imaging probe widely used for the detection of hypoxia. We previously reported that [18F]FMISO is metabolized to the glutathione conjugate of the reduced form in hypoxic cells. In addition, we found that the [18F]FMISO uptake level varied depending on the cellular glutathione conjugation and excretion ability such as enzyme activity of glutathione-S-transferase and expression levels of multidrug resistance-associated protein 1 (MRP1, an efflux transporter), in addition to the cellular hypoxic state. In this study, we evaluated whether MRP1 activity affected [18F]FMISO PET imaging. METHODS: FaDu human pharyngeal squamous cell carcinoma cells were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, incubated with [18F]FMISO for 4 h under hypoxia, and their radioactivity was then measured. FaDu tumor-bearing mice were intravenously injected with [18F]FMISO, and PET/CT images were acquired at 4 h post-injection (1st PET scan). Two days later, the same mice were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, and PET/CT images were acquired (2nd PET scan). RESULTS: FaDu cells pretreated with MRP1 inhibitors exhibited significantly higher radioactivity than those without inhibitor treatment (cyclosporine A: 6.91 ± 0.27, lapatinib: 10.03 ± 0.47, MK-571: 10.15 ± 0.44%dose/mg protein, p < 0.01). In the in vivo PET study, the SUVmean ratio in tumors [calculated as after treatment (2nd PET scan)/before treatment of MRP1 inhibitors (1st PET scan)] of the mice treated with MRP1 inhibitors was significantly higher than those of control mice (cyclosporine A: 2.6 ± 0.7, lapatinib: 2.2 ± 0.7, MK-571: 2.2 ± 0.7, control: 1.2 ± 0.2, p < 0.05). CONCLUSION: In this study, we revealed that MRP1 inhibitors increase [18F]FMISO accumulation in hypoxic cells. This suggests that [18F]FMISO-PET imaging is affected by MRP1 inhibitors independent of the hypoxic state.

18.
Cardiovasc Res ; 117(3): 805-819, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32402072

RESUMO

AIMS: Exercise intolerance in patients with heart failure (HF) is partly attributed to skeletal muscle abnormalities. We have shown that reactive oxygen species (ROS) play a crucial role in skeletal muscle abnormalities, but the pathogenic mechanism remains unclear. Xanthine oxidase (XO) is reported to be an important mediator of ROS overproduction in ischaemic tissue. Here, we tested the hypothesis that skeletal muscle abnormalities in HF are initially caused by XO-derived ROS and are prevented by the inhibition of their production. METHODS AND RESULTS: Myocardial infarction (MI) was induced in male C57BL/6J mice, which eventually led to HF, and a sham operation was performed in control mice. The time course of XO-derived ROS production in mouse skeletal muscle post-MI was first analysed. XO-derived ROS production was significantly increased in MI mice from Days 1 to 3 post-surgery (acute phase), whereas it did not differ between the MI and sham groups from 7 to 28 days (chronic phase). Second, mice were divided into three groups: sham + vehicle (Sham + Veh), MI + vehicle (MI + Veh), and MI + febuxostat (an XO inhibitor, 5 mg/kg body weight/day; MI + Feb). Febuxostat or vehicle was administered at 1 and 24 h before surgery, and once-daily on Days 1-7 post-surgery. On Day 28 post-surgery, exercise capacity and mitochondrial respiration in skeletal muscle fibres were significantly decreased in MI + Veh compared with Sham + Veh mice. An increase in damaged mitochondria in MI + Veh compared with Sham + Veh mice was also observed. The wet weight and cross-sectional area of slow muscle fibres (higher XO-derived ROS) was reduced via the down-regulation of protein synthesis-associated mTOR-p70S6K signalling in MI + Veh compared with Sham + Veh mice. These impairments were ameliorated in MI + Feb mice, in association with a reduction of XO-derived ROS production, without affecting cardiac function. CONCLUSION: XO inhibition during the acute phase post-MI can prevent skeletal muscle abnormalities and exercise intolerance in mice with HF.


Assuntos
Inibidores Enzimáticos/farmacologia , Tolerância ao Exercício/efeitos dos fármacos , Febuxostat/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Xantina Oxidase/antagonistas & inibidores , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/enzimologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Xantina Oxidase/metabolismo
19.
Polymers (Basel) ; 12(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630042

RESUMO

Delivery systems to lymph node-resident T cells around tumor tissues are essential for cancer immunotherapy, in order to boost the immune responses. We previously reported that anionic dendrimers, such as carboxyl-, sulfonyl-, and phosphate-terminal dendrimers, were efficiently accumulated in lymph nodes via the intradermal injection. Depending on the terminal structure, their cell association properties were different, and the carboxyl-terminal dendrimers did not associate with any immune cells majorly. In this study, we investigated the delivery of carboxyl-terminal dendrimers with different hydrophobicity to lymph node-resident lymphocytes. Four types of carboxyl-terminal dendrimers-succinylated (C) and 2-carboxy-cyclohexanoylated (Chex) dendrimers with and without phenylalanine (Phe)-were synthesized and named C-den, C-Phe-den, Chex-den, and Chex-Phe-den, respectively. Chex-Phe-den was well associated with lymphocytes, but others were not. Chex-Phe-den, intradermally injected at the footpads of mice, was accumulated in the lymph node, and was highly associated with the lymphocytes, including T cells. Our results suggest that Chex-Phe-den has the potential for delivery to the lymph node-resident T cells, without any specific T cell-targeted ligands.

20.
Ann Nucl Med ; 34(8): 595-599, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32361818

RESUMO

OBJECTIVE: We evaluated the radiation dosage, biodistribution, human safety, and tolerability of the injection of a single dose of [123I] 5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil (IIMU), a new radiotracer targeting thymidine phosphorylase (TP), in healthy volunteers. METHODS: Potential participants were tested at our hospital to confirm their eligibility. Two healthy male adults passed the screening tests. They were injected with 56 and 111 MBq of [123I]IIMU, respectively. Safety assessments were performed before and at 1, 3, 6, 9, 24, 48 h, and 1-week post-injection. Whole-body emission scans were conducted at 1, 3, 6, 24, and 48 h post-injection. Regions of interest were manually drawn to enclose the entire body at each time point, identifying high-uptake organs to obtain the time-activity curves. Urine and blood samples were collected at 1, 2, 3, 4, 5, 6, 9, 24, and 48 h post-injection. The radiation dose for each organ and the effective doses were estimated using OLINDA/EXM 1.1 software. RESULTS: No adverse events were observed as of the follow-up visit > 1-week post-injection. In both subjects, the highest uptake of [123I]IIMU occurred in the liver, with peak injected activity (%IA) values of 17.7% and 15.1%, respectively. The second highest uptake was in the thyroid (0.35% and 0.66% IA). The %IA decreased gradually toward the end of the study (48 h) in all organs except the liver and thyroid. By the end of the study, 52.5% and 51.5% of the injected activity of [123I]IIMU had been excreted via the subjects' renal systems. The estimated mean effective doses of [123I]IIMU were 9.19 µSv/MBq and 10.1 µSv/MBq, respectively. CONCLUSION: In this preliminary study, [123I]IIMU was safely administered to healthy adults, and its potential clinical use in TP imaging was revealed.


Assuntos
Voluntários Saudáveis , Timidina Fosforilase/metabolismo , Uracila/análogos & derivados , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Radiometria , Segurança , Distribuição Tecidual , Uracila/efeitos adversos , Uracila/farmacocinética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA