Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 157(7): 2735-49, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183316

RESUMO

p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Obesidade/genética , Termogênese/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Tecido Adiposo Marrom/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/genética , Peso Corporal/genética , Linhagem Celular , Doxorrubicina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Ratos , Somatotrofos/citologia , Somatotrofos/efeitos dos fármacos , Somatotrofos/metabolismo , Termogênese/genética , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/metabolismo
2.
Nat Commun ; 5: 3563, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24714520

RESUMO

D-Glucosamine (GlcN) is a freely available and commonly used dietary supplement potentially promoting cartilage health in humans, which also acts as an inhibitor of glycolysis. Here we show that GlcN, independent of the hexosamine pathway, extends Caenorhabditis elegans life span by impairing glucose metabolism that activates AMP-activated protein kinase (AMPK/AAK-2) and increases mitochondrial biogenesis. Consistent with the concept of mitohormesis, GlcN promotes increased formation of mitochondrial reactive oxygen species (ROS) culminating in increased expression of the nematodal amino acid-transporter 1 (aat-1) gene. Ameliorating mitochondrial ROS formation or impairment of aat-1-expression abolishes GlcN-mediated life span extension in an NRF2/SKN-1-dependent fashion. Unlike other calorie restriction mimetics, such as 2-deoxyglucose, GlcN extends life span of ageing C57BL/6 mice, which show an induction of mitochondrial biogenesis, lowered blood glucose levels, enhanced expression of several murine amino-acid transporters, as well as increased amino-acid catabolism. Taken together, we provide evidence that GlcN extends life span in evolutionary distinct species by mimicking a low-carbohydrate diet.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Glucosamina/farmacologia , Longevidade/efeitos dos fármacos , Animais , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Aging Cell ; 12(3): 508-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23534459

RESUMO

Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. This requires two transcription factors, namely DAF-16 and SKN-1, which employ the metallothionein MTL-2 as well as the mitochondrial transporter TIN-9.1 to extend lifespan. Taken together, low-dose arsenite extends lifespan, providing evidence for nonlinear dose-response characteristics of toxin-mediated stress resistance and longevity in a multicellular organism.


Assuntos
Arsenitos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Hormese , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Teratogênicos/farmacologia , Células 3T3 , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead , Células Hep G2 , Humanos , Metalotioneína/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Proc Biol Sci ; 278(1724): 3490-6, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21490011

RESUMO

High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l(-1) blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators.


Assuntos
Glicemia/análise , Glicemia/metabolismo , Quirópteros/metabolismo , Atividade Motora , Animais , Quirópteros/fisiologia , Dieta , Carboidratos da Dieta/análise , Carboidratos da Dieta/metabolismo , Metabolismo Energético , Teste de Tolerância a Glucose/veterinária , Néctar de Plantas/análise , Néctar de Plantas/metabolismo , Fatores de Tempo
5.
Aging (Albany NY) ; 2(11): 843-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21084725

RESUMO

Cardiac failure is the most prevalent cause of death at higher age, and is commonly associated with impaired energy homeostasis in the heart. Mitochondrial metabolism appears critical to sustain cardiac function to counteract aging. In this study, we generated mice transgenically over-expressing the mitochondrial protein frataxin, which promotes mitochondrial energy conversion by controlling iron-sulfur-cluster biogenesis and hereby mitochondrial electron flux. Hearts of transgenic mice displayed increased mitochondrial energy metabolism and induced stress defense mechanisms, while overall oxidative stress was decreased. Following standardized exposure to doxorubicin to induce experimental cardiomyopathy, cardiac function and survival was significantly improved in the transgenic mice. The insulin/IGF-1 signaling cascade is an important pathway that regulates survival following cytotoxic stress through the downstream targets protein kinase B, Akt, and glycogen synthase kinase 3. Activation of this cascade is markedly inhibited in the hearts of wild-type mice following induction of cardiomyopathy. By contrast, transgenic overexpression of frataxin rescues impaired insulin/IGF-1 signaling and provides a mechanism to explain enhanced cardiac stress resistance in transgenic mice. Taken together, these findings suggest that increased mitochondrial metabolism elicits an adaptive response due to mildly increased oxidative stress as a consequence of increased oxidative energy conversion, previously named mitohormesis. This in turn activates protective mechanisms which counteract cardiotoxic stress and promote survival in states of experimental cardiomyopathy. Thus, induction of mitochondrial metabolism may be considered part of a generally protective mechanism to prevent cardiomyopathy and cardiac failure.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Mitocôndrias/metabolismo , Animais , Antibióticos Antineoplásicos/efeitos adversos , Modelos Animais de Doenças , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Hemodinâmica , Humanos , Insulina/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Frataxina
6.
Biochem J ; 432(1): 165-72, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20819074

RESUMO

DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Animais , Linhagem Celular , Células Cultivadas , DNA Glicosilases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Ataxia de Friedreich/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Mutação , Estresse Oxidativo , Células Procarióticas/metabolismo , Salmonella enterica/genética , Transfecção , Frataxina
7.
PLoS One ; 2(10): e1013, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17925861

RESUMO

The Cre/loxP-system has become the system of choice for the generation of conditional so-called knockout mouse strains, i.e. the tissue-specific disruption of expression of a certain target gene. We here report the loss of expression of Cre recombinase in a transgenic mouse strain with increasing number of generations. This eventually led to the complete abrogation of gene expression of the inserted Cre cDNA while still being detectable at the genomic level. Conversely, loss of Cre expression caused an incomplete or even complete lack of disruption for the protein under investigation. As Cre expression in the tissue of interest in most cases cannot be addressed in vivo during the course of a study, our findings implicate the possibility that individual tail-biopsy genotypes may not necessarily indicate the presence or absence of gene disruption. This indicates that sustained post hoc analyses in regards to efficacy of disruption for every single study group member may be required.


Assuntos
Regulação da Expressão Gênica , Genótipo , Integrases/genética , Transgenes , Animais , Biópsia , DNA Complementar/metabolismo , Genes Reporter , Técnicas Genéticas , Camundongos , Camundongos Transgênicos , Fenótipo , Recombinação Genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Cauda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA