Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(44): e2302008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632210

RESUMO

Advances in additive manufacturing have led to diverse patient-specific implant designs utilizing computed tomography, but this requires intensive work and financial implications. Here, Digital Light Processing is used to fabricate a hive-structured assemblable bespoke scaffold (HIVE). HIVE can be manually assembled in any shape/size with ease, so a surgeon can create a scaffold that will best fit a defect before implantation. Simultaneously, it can have site-specific treatments by working as a carrier filled with microcryogels (MC) incorporating different biological factors in different pockets of HIVE. After characterization, possible site-specific applications are investigated by utilizing HIVE as a versatile carrier with incorporated treatments such as growth factors (GF), bioceramic, or cells. HIVE as a GF-carrier shows a controlled release of bone morphogenetic protein/vascular endothelial growth factor (BMP/VEGF) and induced osteogenesis/angiogenesis from human mesenchymal stem cells (hMSC)/human umbilical vein endothelial cells (HUVECs). Furthermore, as a bioceramic-carrier, HIVE demonstrates enhanced mineralization and osteogenesis, and as a HUVEC carrier, it upregulates both osteogenic and angiogenic gene expression of hMSCs. HIVE with different combinations of MCs yields a distinct local effect and successful cell migration is confirmed within assembled HIVEs. Finally, an in vivo rat subcutaneous implantation demonstrates site-specific osteogenesis and angiogenesis.


Assuntos
Medicina Regenerativa , Alicerces Teciduais , Humanos , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteogênese , Células Endoteliais da Veia Umbilical Humana/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Regeneração Óssea
2.
Adv Mater ; 35(10): e2207181, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36373556

RESUMO

Porous structures offer an attractive approach to reduce the amount of natural resources used while maintaining relatively high mechanical efficiency. However, for some applications the drop in mechanical properties resulting from the introduction of porosity is too high, which has limited the broader utilization of porous materials in industry. Here, it is shown that steel monoliths can be designed to display high mechanical efficiency and reversible self-reinforcing properties when made with porous architectures with up to three hierarchical levels. Ultralight steel structures that can float on water and autonomously adapt their stiffness are manufactured by the thermal reduction and sintering of 3D printed foam templates. Using distinct mechanical testing techniques, image analysis, and finite element simulations, the mechanisms leading to the high mechanical efficiency and self-stiffening ability of the hierarchical porous monoliths are studied. The design and fabrication of mechanically stable porous monoliths using iron as a widely available natural resource is expected to contribute to the future development of functional materials with a more sustainable footprint.

3.
Bone ; 166: 116594, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341948

RESUMO

AIM: Abnormal osteocyte lacunar morphology in adolescent idiopathic scoliosis (AIS) has been reported while the results were limited by the number of osteocyte lacunae being quantified. The present study aimed to validate previous findings through (a) comparing morphological features of osteocyte lacunae between AIS patients and controls in spine and ilium using a large-scale assessment, and (b) investigating whether there is an association between the acquired morphological features of osteocyte lacunae and disease severity in AIS. METHOD: Trabecular bone tissue of the facet joint of human vertebrae on both concave and convex sides at the apex of the scoliotic curve were collected from 4 AIS and 5 congenital scoliosis (CS) patients, and also at the same anatomic site from 3 non-scoliosis (NS) subjects intraoperatively. Trabecular bone tissue from ilium was obtained from 12 AIS vs 9 NS subjects during surgery. Osteocyte lacunae were assessed using ultra-high-resolution micro-computed tomography. Clinical information such as age, body mass index (BMI) and radiological Cobb angle of the major curve were collected. RESULTS: There was no significant difference between density of osteocyte lacuna and bone volume fraction (BV/TV) between groups. A total of 230,076 and 78,758 osteocyte lacunae from facet joints of apical vertebra of scoliotic curve and iliac bone were included in the analysis, respectively. In facet joint bone biopsies, lacunar stretch (Lc.St) was higher, and lacunar equancy (Lc.Eq), lacunar oblateness (Lc.Ob), and lacunar sphericity (Lc.Sr) were lower in AIS and CS groups when compared with NS group. CA side was associated with higher Lc.St when compared with CX side. In iliac bone biopsies, Lc.Ob was higher and lacunar surface area (Lc.S) was lower in AIS group than NS group. Median values of Lc.St, Lc.Eq and Lc.Sr were significantly associated with radiological Cobb angle with adjustment for age and BMI (R-squared: 0.576, 0.558 and 0.543, respectively). CONCLUSIONS: This large-scale assessment of osteocyte lacunae confirms that AIS osteocyte lacunae are more oblate in iliac bone that is less influenced by asymmetric loading of the deformed spine than the vertebrae. Shape of osteocyte lacunae in iliac bone is associated with radiological Cobb angle of the major curve in AIS patients, suggesting the likelihood of systemic abnormal osteocyte morphology in AIS. Osteocyte lacunae from concave side of scoliotic curves were more stretched in both AIS and CS groups, which is likely secondary to asymmetric mechanical loading.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Microtomografia por Raio-X , Osteócitos/patologia , Escoliose/diagnóstico por imagem , Coluna Vertebral/patologia
4.
Sci Rep ; 11(1): 23037, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845246

RESUMO

Fracture healing is regulated by mechanical loading. Understanding the underlying mechanisms during the different healing phases is required for targeted mechanical intervention therapies. Here, the influence of individualized cyclic mechanical loading on the remodelling phase of fracture healing was assessed in a non-critical-sized mouse femur defect model. After bridging of the defect, a loading group (n = 10) received individualized cyclic mechanical loading (8-16 N, 10 Hz, 5 min, 3 × /week) based on computed strain distribution in the mineralized callus using animal-specific real-time micro-finite element analysis with 2D/3D visualizations and strain histograms. Controls (n = 10) received 0 N treatment at the same post-operative time-points. By registration of consecutive scans, structural and dynamic callus morphometric parameters were followed in three callus sub-volumes and the adjacent cortex showing that the remodelling phase of fracture healing is highly responsive to cyclic mechanical loading with changes in dynamic parameters leading to significantly larger formation of mineralized callus and higher degree of mineralization. Loading-mediated maintenance of callus remodelling was associated with distinct effects on Wnt-signalling-associated molecular targets Sclerostin and RANKL in callus sub-regions and the adjacent cortex (n = 1/group). Given these distinct local protein expression patterns induced by cyclic mechanical loading during callus remodelling, the femur defect loading model with individualized load application seems suitable to further understand the local spatio-temporal mechano-molecular regulation of the different fracture healing phases.


Assuntos
Calo Ósseo/fisiopatologia , Fêmur/fisiopatologia , Consolidação da Fratura , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Camundongos , Camundongos Endogâmicos C57BL , Osteotomia , Ligante RANK/genética , Transdução de Sinais , Imagem com Lapso de Tempo , Tomografia Computadorizada por Raios X , Proteínas Wnt/metabolismo , Microtomografia por Raio-X
5.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927845

RESUMO

Bone pathology is frequent in stressed individuals. A comprehensive examination of mechanisms linking life stress, depression and disturbed bone homeostasis is missing. In this translational study, mice exposed to early life stress (MSUS) were examined for bone microarchitecture (µCT), metabolism (qPCR/ELISA), and neuronal stress mediator expression (qPCR) and compared with a sample of depressive patients with or without early life stress by analyzing bone mineral density (BMD) (DXA) and metabolic changes in serum (osteocalcin, PINP, CTX-I). MSUS mice showed a significant decrease in NGF, NPYR1, VIPR1 and TACR1 expression, higher innervation density in bone, and increased serum levels of CTX-I, suggesting a milieu in favor of catabolic bone turnover. MSUS mice had a significantly lower body weight compared to control mice, and this caused minor effects on bone microarchitecture. Depressive patients with experiences of childhood neglect also showed a catabolic pattern. A significant reduction in BMD was observed in depressive patients with childhood abuse and stressful life events during childhood. Therefore, future studies on prevention and treatment strategies for both mental and bone disease should consider early life stress as a risk factor for bone pathologies.


Assuntos
Experiências Adversas da Infância , Osso e Ossos/metabolismo , Colágeno Tipo I/sangue , Transtorno Depressivo/sangue , Osteocalcina/sangue , Fragmentos de Peptídeos/sangue , Peptídeos/sangue , Pró-Colágeno/sangue , Absorciometria de Fóton , Animais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/inervação , Transtorno Depressivo/diagnóstico por imagem , Feminino , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estudos Retrospectivos , Microtomografia por Raio-X
6.
J Cachexia Sarcopenia Muscle ; 11(4): 1121-1140, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32596975

RESUMO

BACKGROUND: Frailty is a geriatric syndrome characterized by increased susceptibility to adverse health outcomes. One major determinant thereof is the gradual weakening of the musculoskeletal system and the associated osteosarcopenia. To improve our understanding of the underlying pathophysiology and, more importantly, to test potential interventions aimed at counteracting frailty, suitable animal models are needed. METHODS: To evaluate the relevance of prematurely aged PolgA(D257A/D257A) mice as a model for frailty and osteosarcopenia, we quantified the clinical mouse frailty index in PolgA(D257A/D257A) and wild-type littermates (PolgA(+/+) , WT) with age and concertedly assessed the quantity and quality of bone and muscle tissue. Lastly, the anabolic responsiveness of skeletal muscle, muscle progenitors, and bone was assessed. RESULTS: PolgA(D257A/D257A) accumulated health deficits at a higher rate compared with WT, resulting in a higher frailty index at 40 and 46 weeks of age (+166%, +278%, P < 0.0001), respectively, with no differences between genotypes at 34 weeks. Concomitantly, PolgA(D257A/D257A) displayed progressive musculoskeletal deterioration such as reduced bone and muscle mass as well as impaired functionality thereof. In addition to lower muscle weights (-14%, P < 0.05, -23%, P < 0.0001) and fibre area (-20%, P < 0.05, -22%, P < 0.0001) at 40 and 46 weeks, respectively, PolgA(D257A/D257A) showed impairments in grip strength and concentric muscle forces (P < 0.05). PolgA(D257A/D257A) mutation altered the acute response to various anabolic stimuli in skeletal muscle and muscle progenitors. While PolgA(D257A/D257A) muscles were hypersensitive to eccentric contractions as well as leucine administration, shown by larger downstream signalling response of the mechanistic target of rapamycin complex 1, myogenic progenitors cultured in vitro showed severe anabolic resistance to leucine and robust impairments in cell proliferation. Longitudinal micro-computed tomography analysis of the sixth caudal vertebrae showed that PolgA(D257A/D257A) had lower bone morphometric parameters (e.g. bone volume fraction, trabecular, and cortical thickness, P < 0.05) as well as reduced remodelling activities (e.g. bone formation and resorption rate, P < 0.05) compared with WT. When subjected to 4 weeks of cyclic loading, young but not aged PolgA(D257A/D257A) caudal vertebrae showed load-induced bone adaptation, suggesting reduced mechanosensitivity with age. CONCLUSIONS: PolgA(D257A/D257A) mutation leads to hallmarks of age-related frailty and osteosarcopenia and provides a powerful model to better understand the relationship between frailty and the aging musculoskeletal system.


Assuntos
DNA Polimerase gama/metabolismo , Sarcopenia/genética , Senilidade Prematura , Animais , Modelos Animais de Doenças , Feminino , Fragilidade , Humanos , Camundongos , Sarcopenia/patologia
7.
Nat Biomed Eng ; 4(4): 463-475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685999

RESUMO

Growth factors can stimulate tissue regeneration, but the side effects and low effectiveness associated with suboptimal delivery systems have impeded their use in translational regenerative medicine. Physiologically, growth factor interactions with the extracellular matrix control their bioavailability and spatiotemporal cellular signalling. Growth factor signalling is also controlled at the cell surface level via binding to heparan sulfate proteoglycans, such as syndecans. Here we show that vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) that were engineered to have a syndecan-binding sequence trigger sustained low-intensity signalling (tonic signalling) and reduce the desensitization of growth factor receptors. We also show in mouse models that tonic signalling leads to superior morphogenetic activity, with syndecan-binding growth factors inducing greater bone regeneration and wound repair than wild-type growth factors, as well as reduced tumour growth (associated with PDGF-BB delivery) and vascular permeability (triggered by VEGF-A). Tonic signalling via syndecan binding may also enhance the regenerative capacity of other growth factors.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sindecanas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Becaplermina/metabolismo , Regeneração Óssea/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microfluídica , Modelos Animais , Neuropilina-1 , Receptores de Fatores de Crescimento/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-30873124

RESUMO

Bone marrow adipose tissue (MAT) is influenced by nutritional cues, and participates in whole body energy metabolism. To investigate the role of Sirtuin1 (Sirt1), a key player in metabolism, in MAT, marrow adiposity was evaluated in inbred 5-month-old 129/Sv Sirt1 haplo-insufficient (Sirt1 Δ/+) and wild type (WT) mice. Decreased expression of the thermogenic genes: Prdm16, Pgc1α, Foxc2, Dio2, and ß3AR was detected in whole tibiae derived from Sirt1 Δ/+ compared to WT female mice. Similarly, decreased expression of Prdm16 and Pgc1α was observed in primary bone marrow mesenchymal stem cell (BM-MSC) cultures obtained from Sirt1 Δ/+ compared to WT female mice, suggesting a cell autonomous effect of Sirt1 in BM-MSCs. In vitro, Sirt1 over-expression in the mesenchymal embryonic fibroblast stem cell line C3HT101/2 increased Pgc1α and Prdm16 protein level. Similarly, pharmacologic activation of Sirt1 by SRT3025 increased Foxc2, Pgc1α, Dio2, Tfam, and Cyc1 expression while inhibition of Sirt1 by EX527 down-regulated UCP1 in C3HT101/2 cells. Importantly, in human femoral BM-MSCs obtained from female patients undergoing hip operations for fracture or osteoarthritis, Sirt1 activation by SRT3025 increased PGC1α mRNA and protein level. Blocking sclerostin, an inhibitor of the WNT pathway and a Sirt1 target, by the monoclonal humanized antibody (Sc-AbII), stimulated ß3AR, PRDM16, and UCP1 gene expression, and increased PGC1α protein level. These results show that Sirt1 stimulates a thermogenic gene program in marrow adipocytes in mice and humans via PGC1α activation and sclerostin inhibition. The implications of these findings to bone health, hematopoiesis and whole body energy metabolism remain to be investigated.

9.
PLoS One ; 12(9): e0184835, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910363

RESUMO

Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osteoporose/terapia , Implantação de Prótese/métodos , Microtomografia por Raio-X/métodos , Animais , Modelos Animais de Doenças , Feminino , Estudos Longitudinais , Metais/química , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Osteoporose/diagnóstico por imagem , Osteoporose/etiologia , Ovariectomia/efeitos adversos
10.
PLoS One ; 12(7): e0181600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732055

RESUMO

The role of mammalian high temperature requirement protease A1 (HTRA1) in somatic stem cell differentiation and mineralized matrix formation remains controversial, having been demonstrated to impart either anti- or pro-osteogenic effects, depending on the in vitro cell model used. The aim of this study was therefore to further evaluate the role of HTRA1 in regulating the differentiation potential and lineage commitment of murine mesenchymal stem cells in vitro, and to assess its influence on bone structure and regeneration in vivo. Our results demonstrated that short hairpin RNA-mediated ablation of Htra1 in the murine mesenchymal cell line C3H10T1/2 increased the expression of several osteogenic gene markers, and significantly enhanced matrix mineralization in response to BMP-2 stimulation. These effects were concomitant with decreases in the expression of chondrogenic gene markers, and increases in adipogenic gene expression and lipid accrual. Despite the profound effects of loss-of-function of HTRA1 on this in vitro osteochondral model, these were not reproduced in vivo, where bone microarchitecture and regeneration in 16-week-old Htra1-knockout mice remained unaltered as compared to wild-type controls. By comparison, analysis of femurs from 52-week-old mice revealed that bone structure was better preserved in Htra1-knockout mice than age-matched wild-type controls. These findings therefore provide additional insights into the role played by HTRA1 in regulating mesenchymal stem cell differentiation, and offer opportunities for improving our understanding of how this multifunctional protease may act to influence bone quality.


Assuntos
Condrogênese/fisiologia , Osteogênese/fisiologia , Regeneração/fisiologia , Serina Endopeptidases/metabolismo , Adipogenia/fisiologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Expressão Gênica/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Osteoblastos/metabolismo
11.
Nat Commun ; 7: 11051, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27001940

RESUMO

Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1ß which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3ß/ß-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications.


Assuntos
Regeneração Óssea/genética , Interleucina-1beta/imunologia , Células-Tronco Mesenquimais/imunologia , Fator 88 de Diferenciação Mieloide/genética , Osteoblastos/metabolismo , Receptores Tipo I de Interleucina-1/genética , Crânio/lesões , Animais , Regeneração Óssea/imunologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Condrócitos , Citocinas/imunologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Macrófagos/imunologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Osteoblastos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/genética , Regeneração/imunologia , Transdução de Sinais , Crânio/diagnóstico por imagem , Receptores Toll-Like/imunologia , Via de Sinalização Wnt , Microtomografia por Raio-X , beta Catenina/metabolismo
12.
J Biomech ; 48(5): 866-74, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25601212

RESUMO

Huiskes et al. hypothesized that mechanical strains sensed by osteocytes residing in trabecular bone dictate the magnitude of load-induced bone formation. More recently, the mechanical environment in bone marrow has also been implicated in bone׳s response to mechanical stimulation. In this study, we hypothesize that trabecular load-induced bone formation can be predicted by mechanical signals derived from an integrative µFE model, incorporating a description of both the bone and marrow phase. Using the mouse tail loading model in combination with in vivo micro-computed tomography (µCT) we tracked load induced changes in the sixth caudal vertebrae of C57BL/6 mice to quantify the amount of newly mineralized and eroded bone volumes. To identify the mechanical signals responsible for adaptation, local morphometric changes were compared to micro-finite element (µFE) models of vertebrae prior to loading. The mechanical parameters calculated were strain energy density (SED) on trabeculae at bone forming and resorbing surfaces, SED in the marrow at the boundary between bone forming and resorbing surfaces, along with SED in the trabecular bone and marrow volumes. The gradients of each parameter were also calculated. Simple regression analysis showed mean SED gradients in the trabecular bone matrix to significantly correlate with newly mineralized and eroded bone volumes R(2)=0.57 and 0.41, respectively, p<0.001). Nevertheless, SED gradients in the marrow were shown to be the best predictor of osteoblastic and osteoclastic activity (R(2)=0.83 and 0.60, respectively, p<0.001). These data suggest that the mechanical environment of the bone marrow plays a significant role in determining osteoblast and osteoclast activity.


Assuntos
Medula Óssea/fisiologia , Modelos Teóricos , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Coluna Vertebral/fisiologia , Animais , Feminino , Análise de Elementos Finitos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Estresse Mecânico , Suporte de Carga , Microtomografia por Raio-X
13.
Biomaterials ; 35(26): 7326-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24933514

RESUMO

Adipose-derived stromal cells (ASCs) are increasingly being used for orthopedic-based tissue engineering approaches due to their ability to readily undergo osteogenic differentiation. In the present study, we used in vitro and in vivo approaches to evaluate the use of ASCs as a treatment strategy for age-related osteoporosis. Molecular, histological and micro-computed tomography (micro-CT) based approaches confirmed that ASCs isolated from 18-week-old osteoporotic senescence-accelerated mice (SAMP6) were capable of undergoing osteogenesis when cultured in either silk fibroin (SF) scaffolds or scaffold-free microtissues (ASC-MT). A single intratibial injection of CM-Dil-labeled isogeneic ASCs or ASC-MT into SAMP6 recipients significantly improved trabecular bone quality after 6 weeks in comparison to untreated contralateral bones, as determined by micro-CT. Injected ASCs could be observed in paraffin wax bone sections at 24 h and 6 weeks post treatment and induced a significant increase in several molecular markers of bone turnover. Furthermore, a significant improvement in the osteogenic potential of osteoporotic patient-derived human bone marrow stromal cells (BMSCs) was observed when differentiated in conditioned culture media harvested from osteoporotic patient-derived human ASCs. These findings therefore support the use of ASCs as an autologous cell-based approach for the treatment of osteoporosis.


Assuntos
Tecido Adiposo/citologia , Osteogênese , Osteoporose/terapia , Células Estromais/transplante , Fatores Etários , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoporose/epidemiologia , Osteoporose/patologia , Células Estromais/citologia , Tíbia/citologia , Tíbia/patologia
14.
Acta Biomater ; 10(10): 4377-89, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905933

RESUMO

In this work we have evaluated the capacity of bone morphogenetic protein-2 (BMP-2) and fibrin-binding platelet-derived growth factor-BB (PDGF-BB) to support cell growth and induce bone regeneration using two different imaging technologies to improve the understanding of structural and organizational processes participating in tissue repair. Human mesenchymal stem cells from adipose tissue (hAMSCs) expressing two luciferase genes, one under the control of the cytomegalovirus (CMV) promoter and the other under the control of a tissue-specific promoter (osteocalcin or platelet endothelial cell adhesion molecule), were seeded in fibrin matrices containing BMP-2 and fibrin-binding PDGF-BB, and further implanted intramuscularly or in a mouse calvarial defect. Then, cell growth and bone regeneration were monitored by bioluminescence imaging (BLI) to analyze the evolution of target gene expression, indicative of cell differentiation towards the osteoblastic and endothelial lineages. Non-invasive imaging was supplemented with micro-computed tomography (µCT) to evaluate bone regeneration and high-resolution µCT of vascular casts. Results from BLI showed hAMSC growth during the first week in all cases, followed by a rapid decrease in cell number; as well as an increment of osteocalcin but not PECAM-1 expression 3weeks after implantation. Results from µCT show that the delivery of BMP-2 and PDGF-BB by fibrin induced the formation of more bone and improves vascularization, resulting in more abundant and thicker vessels, in comparison with controls. Although the inclusion of hAMSCs in the fibrin matrices made no significant difference in any of these parameters, there was a significant increment in the connectivity of the vascular network in defects treated with hAMSCs.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea , Diferenciação Celular , Fibrina/farmacologia , Medições Luminescentes , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Crânio , Microtomografia por Raio-X , Tecido Adiposo/metabolismo , Animais , Becaplermina , Células Endoteliais/metabolismo , Matriz Extracelular/química , Humanos , Luciferases/biossíntese , Luciferases/genética , Camundongos , Camundongos SCID , Osteoblastos/metabolismo , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
15.
J Am Soc Nephrol ; 25(9): 2040-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24652796

RESUMO

High dietary protein imposes a metabolic acid load requiring excretion and buffering by the kidney. Impaired acid excretion in CKD, with potential metabolic acidosis, may contribute to the progression of CKD. Here, we investigated the renal adaptive response of acid excretory pathways in mice to high-protein diets containing normal or low amounts of acid-producing sulfur amino acids (SAA) and examined how this adaption requires the RhCG ammonia transporter. Diets rich in SAA stimulated expression of enzymes and transporters involved in mediating NH4 (+) reabsorption in the thick ascending limb of the loop of Henle. The SAA-rich diet increased diuresis paralleled by downregulation of aquaporin-2 (AQP2) water channels. The absence of Rhcg transiently reduced NH4 (+) excretion, stimulated the ammoniagenic pathway more strongly, and further enhanced diuresis by exacerbating the downregulation of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and AQP2, with less phosphorylation of AQP2 at serine 256. The high protein acid load affected bone turnover, as indicated by higher Ca(2+) and deoxypyridinoline excretion, phenomena exaggerated in the absence of Rhcg. In animals receiving a high-protein diet with low SAA content, the kidney excreted alkaline urine, with low levels of NH4 (+) and no change in bone metabolism. Thus, the acid load associated with high-protein diets causes a concerted response of various nephron segments to excrete acid, mostly in the form of NH4 (+), that requires Rhcg. Furthermore, bone metabolism is altered by a high-protein acidogenic diet, presumably to buffer the acid load.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Alimentares/administração & dosagem , Rim/metabolismo , Glicoproteínas de Membrana/metabolismo , Aminoácidos Sulfúricos/administração & dosagem , Animais , Aquaporina 2/metabolismo , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Caseínas/administração & dosagem , Caseínas/efeitos adversos , Caseínas/química , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas Alimentares/efeitos adversos , Proteínas Alimentares/química , Diurese , Concentração de Íons de Hidrogênio , Medula Renal/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Proteínas de Soja/administração & dosagem , Proteínas de Soja/química , Urina/química
16.
Science ; 343(6173): 885-8, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24558160

RESUMO

Growth factors (GFs) are critical in tissue repair, but their translation to clinical use has been modest. Physiologically, GF interactions with extracellular matrix (ECM) components facilitate localized and spatially regulated signaling; therefore, we reasoned that the lack of ECM binding in their clinically used forms could underlie the limited translation. We discovered that a domain in placenta growth factor-2 (PlGF-2(123-144)) binds exceptionally strongly and promiscuously to ECM proteins. By fusing this domain to the GFs vascular endothelial growth factor-A, platelet-derived growth factor-BB, and bone morphogenetic protein-2, we generated engineered GF variants with super-affinity to the ECM. These ECM super-affinity GFs induced repair in rodent models of chronic wounds and bone defects that was greatly enhanced as compared to treatment with the wild-type GFs, demonstrating that this approach may be useful in several regenerative medicine applications.


Assuntos
Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cicatrização , Animais , Becaplermina , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Placentário , Proteínas da Gravidez/química , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-sis/química , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
PLoS One ; 9(1): e86562, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475146

RESUMO

The vasculature of body tissues is continuously subject to remodeling processes originating at the micro-vascular level. The formation of new blood vessels (angiogenesis) is essential for a number of physiological and pathophysiological processes such as tissue regeneration, tumor development and the integration of artificial tissues. There are currently no time-lapsed in vivo imaging techniques providing information on the vascular network at the capillary level in a non-destructive, three-dimensional and high-resolution fashion. This paper presents a novel imaging framework based on contrast enhanced micro-computed tomography (micro-CT) for hierarchical in vivo quantification of blood vessels in mice, ranging from largest to smallest structures. The framework combines for the first time a standard morphometric approach with densitometric analysis. Validation tests showed that the method is precise and robust. Furthermore, the framework is sensitive in detecting different perfusion levels after the implementation of a murine ischemia-reperfusion model. Correlation with both histological data and micro-CT analysis of vascular corrosion casts confirmed accuracy of the method. The newly developed time-lapsed imaging approach shows high potential for in vivo monitoring of a number of different physiological and pathological conditions in angiogenesis and vascular development.


Assuntos
Microvasos/ultraestrutura , Traumatismo por Reperfusão/patologia , Imagem com Lapso de Tempo/métodos , Microtomografia por Raio-X/métodos , Animais , Molde por Corrosão/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Physiol Rep ; 1(2): e00018, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24303107

RESUMO

Erythroblasts proliferate and differentiate in hematopoietic organs within erythroblastic islands (EI) composed of erythropoietic progenitor cells attached to a central macrophage. This cellular interaction crucially involves the erythroid intercellular adhesion molecule-4 (ICAM-4) and αv integrin. Because integrins are biologically active as α/ß heterodimers, we asked whether ß3 could be a heterodimerization partner of αv integrin in EIs. To this end we compared stress erythropoiesis driven by two different mechanisms, namely that of integrin ß3-deficient (ß3(-/-)) mice that exhibit impaired hemostasis due to platelet dysfunction with that of systemically erythropoietin-overexpressing (tg6) mice. While compared to the respective wild type (wt) controls ß3(-/-) mice had much less erythropoietic stimulation than tg6 mice ß3(-/-) blood contained more erythrocytes of a lower maturity stage. Unexpectedly, membranes of peripheral erythrocytes from ß3(-/-) mice (but not those from either wt control or from tg6 mice) contained calnexin, a chaperone that is normally completely lost during terminal differentiation of reticulocytes prior to their release into the circulation. In contrast to erythropoietin-overexpressing mice, the erythropoietic subpopulations representing orthochromatic erythroblasts and premature reticulocytes as well as the number of cells per EI were reduced in ß3(-/-) bone marrow. In conclusion, absence of integrin ß3 impairs adhesion of the latest erythroid developmental stage to the central macrophage of EIs resulting in preterm release of abnormally immature erythrocytes into the circulation.

19.
Hum Gene Ther ; 23(2): 167-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21958321

RESUMO

Abstract Adult human mesenchymal stromal cells (hMSCs) are an important source for tissue repair in regenerative medicine. Notably, targeted gene therapy in hMSCs to promote osteogenic differentiation may help in the development of novel therapeutic approaches for bone repair. We recently showed that α5 integrin (ITGA5) promotes osteoblast differentiation in bone marrow-derived hMSCs. Here, we determined whether lentiviral (LV)-mediated expression of ITGA5 in hMSCs derived from the bone-marrow stroma of healthy individuals may promote bone repair in vivo in two relevant critical-size bone defects in the mouse. In a first series of experiments, control or LV-ITGA5-transduced hMSCs were seeded on collagen-based gelatin sponge and transplanted in a cranial critical-size defect (5 mm) in Nude-Foxn1nu mice. Microcomputed tomography and quantitative histological analyses after 8 weeks showed no or little de novo bone formation in defects implanted with collagen sponge alone or with hMSCs, respectively. In contrast, implantation of collagen sponge with LV-ITGA5-transduced hMSCs showed greater bone formation compared with control hMSCs. We also tested the bone-repair potential of LV-mediated ITGA5 expression in hMSCs in a critical-size long-bone defect (2 mm) in femur in Nude-Foxn1nu mice. Bone remnants were stabilized with external fixation, and control or LV-ITGA5-transduced hMSCs mixed with coral/hydroxyapatite particles were transplanted into the critical-size long-bone defect. Histological analysis after 8 weeks showed that LV-ITGA5-transduced hMSCs implanted with particles induced 85% bone regeneration and repair. These results demonstrate that repair of critical-size mouse cranial and long-bone defects can be induced using LV-mediated ITGA5 gene expression in hMSCs, which provides a novel gene therapy for bone regeneration.


Assuntos
Regeneração Óssea , Fêmur/fisiologia , Terapia Genética , Integrina alfa5/genética , Lentivirus/genética , Células-Tronco Mesenquimais/metabolismo , Crânio/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Células , Fêmur/diagnóstico por imagem , Fêmur/lesões , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Vetores Genéticos , Humanos , Integrina alfa5/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Radiografia , Crânio/diagnóstico por imagem , Crânio/lesões
20.
Calcif Tissue Int ; 90(2): 108-19, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22159822

RESUMO

Recently, it has been shown that transient bone biology can be observed in vivo using time-lapse micro-computed tomography (µCT) in the mouse tail bone. Nevertheless, in order for the mouse tail bone to be a model for human disease, the hallmarks of any disease must be mimicked. The aim of this study was to investigate whether postmenopausal osteoporosis could be modeled in caudal vertebrae of C57Bl/6 mice, considering static and dynamic bone morphometry as well as mechanical properties, and to describe temporal changes in bone remodeling rates. Twenty C57Bl/6 mice were ovariectomized (OVX, n = 11) or sham-operated (SHM, n = 9) and monitored with in vivo µCT on the day of surgery and every 2 weeks after, up to 12 weeks. There was a significant decrease in bone volume fraction for OVX (-35%) compared to SHM (+16%) in trabecular bone (P < 0.001). For OVX, high-turnover bone loss was observed, with the bone resorption rate exceeding the bone formation rate (P < 0.001). Furthermore there was a significant decrease in whole-bone stiffness for OVX (-16%) compared to SHM (+11%, P < 0.001). From these results we conclude that the mouse tail vertebra mimics postmenopausal bone loss with respect to these parameters and therefore might be a suitable model for postmenopausal osteoporosis. When evaluating temporal changes in remodeling rates, we found that OVX caused an immediate increase in bone resorption rate (P < 0.001) and a delayed increase in bone formation rate (P < 0.001). Monitoring transient bone biology is a promising method for future research.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osteoporose Pós-Menopausa/diagnóstico por imagem , Animais , Remodelação Óssea/fisiologia , Modelos Animais de Doenças , Feminino , Análise de Elementos Finitos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Cauda/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA