Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672028

RESUMO

Expandable polystyrene (EPS) and expanded polypropylene (EPP) dominate the bead foam market. As the low thermal performance of EPS and EPP limits application at elevated temperatures novel solutions such as expanded polybutylene terephthalate (E-PBT) are gaining importance. To produce parts, individual beads are typically molded by hot steam. While molding of EPP is well-understood and related to two distinct melting temperatures, the mechanisms of E-PBT are different. E-PBT shows only one melting peak and can surprisingly only be molded when adding chain extender (CE). This publication therefore aims to understand the impact of thermal properties of E-PBT on its molding behavior. Detailed differential scanning calorimetry was performed on neat and chain extended E-PBT. The crystallinity of the outer layer and center of the bead was similar. Thus, a former hypothesis that a completely amorphous bead layer enables molding, was discarded. However, the incorporation of CE remarkably reduces the crystallization and re-crystallization rate. As a consequence, the time available for interdiffusion of chains across neighboring beads increases and facilitates crystallization across the bead interface. For E-PBT bead foams, it is concluded that sufficient time for polymer interdiffusion during molding is crucial and requires adjusted crystallization kinetics.

2.
Polymers (Basel) ; 12(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050426

RESUMO

Bead foams serve in a wide variety of applications, from insulation and packaging to midsoles in shoes. However, the currently used materials are limited to somewhat low temperature or exhibit significant changes in modulus in the temperature range of many applications due to their glass transition. By comparison, polycarbonate (PC) exhibits almost constant mechanics for temperatures up to 130 °C. Therefore, it appears as an advantageous base material for bead foams. The aim of the publication is to provide comprehensive data on the properties of expanded PC (EPC) in comparison to already commercially available expanded polypropylene, EPP, and expanded polyethylene-terephthalate, EPET. A special focus is set on the thermo-mechanical properties as these are the most lacking features in current materials. In this frame, dynamic mechanical analysis, and tensile, bending, compression and impact tests at room temperature (RT), 80 °C, and 110 °C are conducted for the three materials of the same density. Already at RT, EPC exhibits superior mechanics compared to its peers, which becomes more pronounced toward higher temperature. This comes from the low sensitivity of properties to temperature as EPC is used below its glass transition. In summary, EPC proves to be an outstanding foam material over a broad range of temperatures for structural applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA