Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Allergy Clin Immunol ; 153(5): 1392-1405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38280573

RESUMO

BACKGROUND: Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE: We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS: We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS: Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION: Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Ataxia Telangiectasia , Linfócitos B , Switching de Imunoglobulina , Humanos , Ataxia Telangiectasia/imunologia , Ataxia Telangiectasia/genética , Adulto , Adolescente , Masculino , Feminino , Pessoa de Meia-Idade , Criança , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linfócitos B/imunologia , Adulto Jovem , Idoso , Hipermutação Somática de Imunoglobulina , Pré-Escolar , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166987, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070582

RESUMO

Initial cysts that are formed upon Pkd1 loss in mice impose persistent stress on surrounding tissue and trigger a cystic snowball effect, in which local aberrant PKD-related signaling increases the likelihood of new cyst formation, ultimately leading to accelerated disease progression. Although many pathways have been associated with PKD progression, the knowledge of early changes near initial cysts is limited. To perform an unbiased analysis of transcriptomic alterations in the cyst microenvironment, microdomains were collected from kidney sections of iKsp-Pkd1del mice with scattered Pkd1-deletion using Laser Capture Microdissection. These microdomains were defined as F4/80-low cystic, representing early alterations in the cyst microenvironment, F4/80-high cystic, with more advanced alterations, or non-cystic. RNA sequencing and differential gene expression analysis revealed 953 and 8088 dysregulated genes in the F4/80-low and F4/80-high cyst microenvironment, respectively, when compared to non-cystic microdomains. In the early cyst microenvironment, several injury-repair, growth, and tissue remodeling-related pathways were activated, accompanied by mild metabolic changes. In the more advanced F4/80-high microdomains, these pathways were potentiated and the metabolism was highly dysregulated. Upstream regulator analysis revealed a series of paracrine factors with increased activity in the early cyst microenvironment, including TNFSF12 and OSM. In line with the upstream regulator analysis, TWEAK and Oncostatin-M promoted cell proliferation and inflammatory gene expression in renal epithelial cells and fibroblasts in vitro. Collectively, our data provide an overview of molecular alterations that specifically occur in the cyst microenvironment and identify paracrine factors that may mediate early and advanced alterations in the cyst microenvironment.


Assuntos
Cistos , Doenças Renais Policísticas , Camundongos , Animais , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Rim/metabolismo , Perfilação da Expressão Gênica , Cistos/genética , Microambiente Tumoral
3.
Thromb Res ; 232: 27-34, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918288

RESUMO

BACKGROUND: Glioblastoma patients are at high risk of developing venous thromboembolism (VTE). Tumor-intrinsic features are considered to play a role, but the underlying pathophysiological mechanisms remain incompletely understood. OBJECTIVES: To identify tumor-expressed genes and signaling pathways that associate with glioblastoma-related VTE by using next generation RNA-sequencing (RNA-Seq). METHODS: The tumor gene expression profile of 23 glioblastoma patients with VTE and 23 glioblastoma patients without VTE was compared using an unpaired analysis. Ingenuity Pathway Analysis (IPA) core analysis was performed on the top 50 differentially expressed genes to explore associated functions and pathways. Based on full RNA-Seq data, molecular glioblastoma subtypes were determined by performing cluster analysis. RESULTS: Of the 19,327 genes, 1246 (6.4 %) were differentially expressed between glioblastoma patients with and without VTE (unadjusted P < 0.05). The most highly overexpressed gene was GLI1, a classical target gene in the Sonic Hedgehog (Shh) signaling pathway (log2 fold change: 3.7; unadjusted P < 0.0001, adjusted P = 0.219). In line, Shh signaling was among the top canonical pathways and processes associated with VTE. The proportion of patients with the proneural/neural glioblastoma subtype was higher among those with VTE than controls. CONCLUSION: Shh signaling may be involved in the development of glioblastoma-related VTE.


Assuntos
Glioblastoma , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Glioblastoma/complicações , Glioblastoma/genética , Glioblastoma/patologia , Estudos de Casos e Controles , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais/genética , RNA
4.
iScience ; 26(11): 108278, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026227

RESUMO

Metabolic reprogramming is a driver of autosomal dominant polycystic kidney disease (ADPKD) progression and a potential therapeutic intervention route. We showed before that the AMP-associated protein kinase (AMPK) activator salsalate attenuates cystic disease progression. Here, we aim to study the early, direct effects of short salsalate treatment in adult-onset conditional Pkd1 deletion mice. Cystic mice were treated with salsalate for two weeks, after which NMR metabolomics and RNA sequencing analyses were performed. Pkd1 deletion resulted in clear metabolomic dysregulation. Short salsalate treatment has small, but significant, effects, reverting acetylcarnitine and phosphocholine concentrations back to wildtype levels, and showing associations with altered purine metabolism. RNA sequencing revealed that short salsalate treatment, next to restoring energy metabolism toward wildtype levels, also affects cell proliferation and inflammation, in PKD. We show that salsalate positively affects major dysregulated processes in ADPKD: energy metabolism, cell proliferation, and inflammation, providing more insights into its working mechanisms.

5.
Sci Signal ; 16(790): eadf1947, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339182

RESUMO

Transforming growth factor-ß (TGF-ß) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-ß signaling, activation of the TGF-ß receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-ß type I receptor (TßRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-ß signaling 1) that was not only increased but also perpetuated by TGF-ß signaling. Loss of LETS1 attenuated TGF-ß-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-ß-SMAD signaling by stabilizing cell surface TßRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TßRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-ß receptor complexes.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Humanos , Fator de Crescimento Transformador beta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Movimento Celular/genética
6.
EMBO J ; 42(10): e112806, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36994542

RESUMO

Epithelial cells acquire mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) during cancer progression. However, how epithelial cells retain their epithelial traits and prevent malignant transformation is not well understood. Here, we report that the long noncoding RNA LITATS1 (LINC01137, ZC3H12A-DT) is an epithelial gatekeeper in normal epithelial cells and inhibits EMT in breast and non-small cell lung cancer cells. Transcriptome analysis identified LITATS1 as a TGF-ß target gene. LITATS1 expression is reduced in lung adenocarcinoma tissues compared with adjacent normal tissues and correlates with a favorable prognosis in breast and non-small cell lung cancer patients. LITATS1 depletion promotes TGF-ß-induced EMT, migration, and extravasation in cancer cells. Unbiased pathway analysis demonstrated that LITATS1 knockdown potently and selectively potentiates TGF-ß/SMAD signaling. Mechanistically, LITATS1 enhances the polyubiquitination and proteasomal degradation of TGF-ß type I receptor (TßRI). LITATS1 interacts with TßRI and the E3 ligase SMURF2, promoting the cytoplasmic retention of SMURF2. Our findings highlight a protective function of LITATS1 in epithelial integrity maintenance through the attenuation of TGF-ß/SMAD signaling and EMT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Plasticidade Celular , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I
7.
Int J Cancer ; 152(12): 2594-2606, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36823950

RESUMO

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat due to its aggressive characteristics and low response to the existing clinical therapies. Distant metastasis is the main cause of death of TNBC patients. Better understanding of the mechanisms underlying TNBC metastasis may lead to new strategies of early diagnosis and more efficient treatment. In our study, we uncovered that the autophagy receptor optineurin (OPTN) plays an unexpected role in TNBC metastasis. Data mining of publicly available data bases revealed that the mRNA level of OPTN in TNBC patients positively correlates with relapse free and distance metastasis free survival. Importantly, in vitro and in vivo models demonstrated that OPTN suppresses TNBC metastasis. Mechanistically, OPTN inhibited the pro-oncogenic transforming growth factor-ß (TGFß) signaling in TNBC cells by interacting with TGFß type I receptor (TßRI) and promoting its ubiquitination for degradation. Consistent with our experimental findings, the clinical TNBC samples displayed a negative correlation between OPTN mRNA expression and TGFß gene response signature and expression of proto-typic TGFß target genes. Altogether, our study demonstrates that OPTN is a negative regulator for TGFß receptor/SMAD signaling and suppresses metastasis in TNBC.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Metástase Neoplásica , Recidiva Local de Neoplasia , RNA Mensageiro/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
8.
Stem Cell Res Ther ; 13(1): 434, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056373

RESUMO

Although mesenchymal stromal cells (MSCs) from primary tissues have been successfully applied in the clinic, their expansion capabilities are limited and results are variable. MSCs derived from human-induced pluripotent stem cells (hiMSCs) are expected to overcome these limitations and serve as a reproducible and sustainable cell source. We have explored characteristics and therapeutic potential of hiMSCs in comparison to hBMSCs. RNA sequencing confirmed high resemblance, with average Pearson correlation of 0.88 and Jaccard similarity index of 0.99, and similar to hBMSCs the hiMSCs released extracellular vesicles with in vitro immunomodulatory properties. Potency assay with TNFα and IFNγ demonstrated an increase in well-known immunomodulatory genes such as IDO1, CXCL8/IL8, and HLA-DRA which was also highlighted by enhanced secretion in the media. Notably, expression of 125 genes increased more than 1000-fold. These genes were predicted to be regulated by NFΚB signaling, known to play a central role in immune response. Altogether, our data qualify hiMSCs as a promising source for cell therapy and/or cell-based therapeutic products. Additionally, the herewith generated database will add to our understanding of the mode of action of regenerative cell-based therapies and could be used to identify relevant potency markers.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Secretoma
9.
Haematologica ; 107(7): 1619-1632, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382383

RESUMO

Primary cutaneous anaplastic large cell lymphoma (pcALCL), a hematological neoplasm caused by skin-homing CD30+ malignant T cells, is part of the spectrum of primary cutaneous CD30+ lymphoproliferative disorders. To date, only a small number of molecular alterations have been described in pcALCL and, so far, no clear unifying theme that could explain the pathogenetic origin of the disease has emerged among patients. In order to clarify the pathogenetic basis of pcALCL, we performed high-resolution genetic profiling (genome/transcriptome) of this lymphoma (n=12) by using whole-genome sequencing, whole-exome sequencing and RNA sequencing. Our study, which uncovered novel genomic rearrangements, copy number alterations and small-scale mutations underlying this malignancy, revealed that the cell cycle, T-cell physiology regulation, transcription and signaling via the PI-3-K, MAPK and G-protein pathways are cellular processes commonly impacted by molecular alterations in patients with pcALCL. Recurrent events affecting cancer-associated genes included deletion of PRDM1 and TNFRSF14, gain of EZH2 and TNFRSF8, small-scale mutations in LRP1B, PDPK1 and PIK3R1 and rearrangements involving GPS2, LINC-PINT and TNK1. Consistent with the genomic data, transcriptome analysis uncovered upregulation of signal transduction routes associated with the PI-3-K, MAPK and G-protein pathways (e.g., ERK, phospholipase C, AKT). Our molecular findings suggest that inhibition of proliferation-promoting pathways altered in pcALCL (particularly PI-3-K/AKT signaling) should be explored as potential alternative therapy for patients with this lymphoma, especially, for cases that do not respond to first-line skin-directed therapies or with extracutaneous disease.


Assuntos
Linfoma Anaplásico de Células Grandes , Linfoma Anaplásico Cutâneo Primário de Células Grandes , Transtornos Linfoproliferativos , Neoplasias Cutâneas , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Proteínas Fetais , Humanos , Antígeno Ki-1 , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Transtornos Linfoproliferativos/patologia , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Cutâneas/metabolismo
10.
Blood ; 138(24): 2539-2554, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34314480

RESUMO

Sézary syndrome (SS) is an aggressive leukemic form of cutaneous T-cell lymphoma with neoplastic CD4+ T cells present in skin, lymph nodes, and blood. Despite advances in therapy, prognosis remains poor, with a 5-year overall survival of 30%. The immunophenotype of Sézary cells is diverse, which hampers efficient diagnosis, sensitive disease monitoring, and accurate assessment of treatment response. Comprehensive immunophenotypic profiling of Sézary cells with an in-depth analysis of maturation and functional subsets has not been performed thus far. We immunophenotypically profiled 24 patients with SS using standardized and sensitive EuroFlow-based multiparameter flow cytometry. We accurately identified and quantified Sézary cells in blood and performed an in-depth assessment of their phenotypic characteristics in comparison with their normal counterparts in the blood CD4+ T-cell compartment. We observed inter- and intrapatient heterogeneity and phenotypic changes over time. Sézary cells exhibited phenotypes corresponding with classical and nonclassical T helper subsets with different maturation phenotypes. We combined multiparameter flow cytometry analyses with fluorescence-activated cell sorting and performed RNA sequencing studies on purified subsets of malignant Sézary cells and normal CD4+ T cells of the same patients. We confirmed pure monoclonality in Sézary subsets, compared transcriptomes of phenotypically distinct Sézary subsets, and identified novel downregulated genes, most remarkably THEMIS and LAIR1, which discriminate Sézary cells from normal residual CD4+ T cells. Together, these findings further unravel the heterogeneity of Sézary cell subpopulations within and between patients. These new data will support improved blood staging and more accurate disease monitoring.


Assuntos
Síndrome de Sézary/diagnóstico , Neoplasias Cutâneas/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Síndrome de Sézary/patologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA