Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 82, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722375

RESUMO

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Assuntos
Envelhecimento , Senescência Celular , Esclerose Múltipla , Oligodendroglia , Humanos , Oligodendroglia/patologia , Oligodendroglia/metabolismo , Senescência Celular/fisiologia , Envelhecimento/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Adulto Jovem , Inflamação/patologia , Inflamação/metabolismo , Substância Branca/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21
2.
Brain Behav Immun Health ; 38: 100787, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737964

RESUMO

Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with progressive lifelong disability. Current treatments are particularly effective at the early inflammatory stage of the disease but associate with safety concerns such as increased risk of infection. While clinical and epidemiological evidence strongly support the role of a bidirectional communication between the lung and the brain in MS in influencing disease risk and severity, the exact processes underlying such relationship appear complex and not fully understood. This short review aims to summarize key findings and future perspectives that might provide new insights into the mechanisms underpinning the lung-brain axis in MS.

3.
Mult Scler Relat Disord ; 79: 104991, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708820

RESUMO

BACKGROUND: A compelling body of evidence implicates cigarette smoking and lung inflammation in Multiple Sclerosis (MS) susceptibility and progression. Previous studies have reported epigenetic age (DNAm age) acceleration in blood immune cells and in glial cells of people with MS (pwMS) compared to healthy controls (HC). OBJECTIVES: We aimed to examine biological ageing in lung immune cells in the context of MS and smoking. METHODS: We analyzed age acceleration residuals in lung bronchoalveolar lavage (BAL) cells, constituted of mainly alveolar macrophages, from 17 pwMS and 22 HC in relation to smoking using eight DNA methylation-based clocks, namely AltumAge, Horvath, GrimAge, PhenoAge, Zhang, SkinBlood, Hannum, Monocyte clock as well as two RNA-based clocks, which capture different aspects of biological ageing. RESULTS: After adjustment for covariates, five epigenetic clocks showed significant differences between the groups. Four of them, Horvath (Padj = 0.028), GrimAge (Padj = 4.28 × 10-7), SkinBlood (Padj = 0.001) and Zhang (Padj = 0.02), uncovered the sole effect of smoking on ageing estimates, irrespective of the clinical group. The Horvath, SkinBlood and Zhang clocks showed a negative impact of smoking while GrimAge detected smoking-associated age acceleration in BAL cells. On the contrary, the AltumAge clock revealed differences between pwMS and HC and indicated that, in the absence of smoking, BAL cells of pwMS were epigenetically 5.4 years older compared to HC (Padj = 0.028). Smoking further affected epigenetic ageing in BAL cells of pwMS specifically as non-smoking pwMS exhibited a 10.2-year AltumAge acceleration compared to pwMS smokers (Padj = 0.0049). Of note, blood-derived monocytes did not show any MS-specific or smoking-related AltumAge differences. The difference between BAL cells of pwMS smokers and non-smokers was attributable to the differential methylation of 114 AltumAge-CpGs (Padj < 0.05) affecting genes involved in innate immune processes such as cytokine production, defense response and cell motility. These changes functionally translated into transcriptional differences in BAL cells between pwMS smokers and non-smokers. CONCLUSIONS: BAL cells of pwMS display inflammation-related and smoking-dependent changes associated to epigenetic ageing captured by the AltumAge clock. Future studies examining potential confounders, such as the distribution of distinct BAL myeloid cell types in pwMS compared to control individuals in relation to smoking may clarify the varying performance and DNAm age estimations among epigenetic clocks.


Assuntos
Epigênese Genética , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Fumar , Envelhecimento/genética , Lavagem Broncoalveolar , Pulmão
4.
Neurology ; 101(7): e679-e689, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541839

RESUMO

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), accelerated aging of the immune system (immunosenescence) may be associated with disease onset or drive progression. DNA methylation (DNAm) is an epigenetic factor that varies among lymphocyte subtypes, and cell-specific DNAm is associated with MS. DNAm varies across the life span and can be used to accurately estimate biological age acceleration, which has been linked to a range of morbidities. The objective of this study was to test for cell-specific epigenetic age acceleration (EAA) in people with MS. METHODS: This was a case-control study of EAA using existing DNAm data from several independent previously published studies. Data were included if .idat files from Illumina 450K or EPIC arrays were available for both a case with MS and an age-matched and sex-matched control, from the same study. Multifactor statistical modeling was performed to assess the primary outcome of EAA. We explored the relationship of EAA and MS, including interaction terms to identify immune cell-specific effects. Cell-sorted DNA methylation data from 3 independent datasets were used to validate findings. RESULTS: We used whole blood DNA methylation data from 583 cases with MS and 643 non-MS controls to calculate EAA using the GrimAge algorithm. The MS group exhibited an increased EAA compared with controls (approximately 9 mths, 95% CI 3.6-14.4), p = 0.001). Statistical deconvolution showed that EAA is associated with MS in a B cell-dependent manner (ß int = 1.7, 95% CI 0.3-2.8), p = 0.002), irrespective of B-cell proportions. Validation analysis using 3 independent datasets enriched for B cells showed an EAA increase of 5.1 years in cases with MS compared with that in controls (95% CI 2.8-7.4, p = 5.5 × 10-5). By comparison, there was no EAA difference in MS in a T cell-enriched dataset. We found that EAA was attributed to the DNAm surrogates for Beta-2-microglobulin (difference = 47,546, 95% CI 10,067-85,026; p = 7.2 × 10-5), and smoking pack-years (difference = 8.1, 95% CI 1.9-14.2, p = 0.002). DISCUSSION: This study provides compelling evidence that B cells exhibit marked EAA in MS and supports the hypothesis that premature B-cell immune senescence plays a role in MS. Future MS studies should focus on age-related molecular mechanisms in B cells.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Estudos de Casos e Controles , Envelhecimento/genética , Epigênese Genética , Metilação de DNA
5.
Mult Scler ; 27(7): 1014-1026, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32729352

RESUMO

BACKGROUND: Despite compelling evidence that cigarette smoking impacts the risk of developing multiple sclerosis (MS), little is known about smoking-associated changes in the primary exposed lung cells of patients. OBJECTIVES: We aimed to examine molecular changes occurring in bronchoalveolar lavage (BAL) cells from MS patients in relation to smoking and in comparison to healthy controls (HCs). METHODS: We profiled DNA methylation in BAL cells from female MS (n = 17) and HC (n = 22) individuals, using Illumina Infinium EPIC and performed RNA-sequencing in non-smokers. RESULTS: The most prominent changes were found in relation to smoking, with 1376 CpG sites (adjusted P < 0.05) differing between MS smokers and non-smokers. Approximately 30% of the affected genes overlapped with smoking-associated changes in HC, leading to a strong common smoking signature in both MS and HC after gene ontology analysis. Smoking in MS patients resulted in additional discrete changes related to neuronal processes. Methylome and transcriptome analyses in non-smokers suggest that BAL cells from MS patients display very subtle (not reaching adjusted P < 0.05) but concordant changes in genes connected to reduced transcriptional/translational processes and enhanced cellular motility. CONCLUSIONS: Our study provides insights into the impact of smoking on lung inflammation and immunopathogenesis of MS.


Assuntos
Epigenoma , Esclerose Múltipla , Metilação de DNA , Feminino , Humanos , Esclerose Múltipla/genética , Fumar/efeitos adversos , Transcriptoma
6.
Epigenetics ; 15(6-7): 646-663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31852353

RESUMO

Unrecognized depression during adolescence can result in adult suicidal behaviour. The aim of this study was to identify, replicate and characterize DNA methylation (DNAm) shifts in depression aetiology, using a longitudinal, multi-tissue (blood and brain) and multi-layered (genetics, epigenetics, transcriptomics) approach. We measured genome-wide blood DNAm data at baseline and one-year follow-up, and imputed genetic variants, in 59 healthy adolescents comprising the discovery cohort. Depression and suicidal symptoms were determined using the Development and Well-Being Assessment (DAWBA) depression band, Montgomery-Åsberg Depression Rating Scale-Self (MADRS-S) and SUicide Assessment Scale (SUAS). DNAm levels at follow-up were regressed against depression scores, adjusting for sex, age and the DNAm residuals at baseline. Higher methylation levels of 5% and 13% at cg24627299 within the MET gene were associated with higher depression scores (praw<1e-4) and susceptibility for suicidal symptoms (padj.<0.005). The nearby rs39748 was discovered to be a methylation and expression quantitative trait locus in blood cells. mRNA levels of hepatocyte growth factor (HGF) expression, known to strongly interact with MET, were inversely associated with methylation levels at cg24627299, in an independent cohort of 1180 CD14+ samples. In an open-access dataset of brain tissue, lower methylation at cg24627299 was found in 45 adults diagnosed with major depressive disorder compared with matched controls (padj.<0.05). Furthermore, lower MET expression was identified in the hippocampus of depressed individuals compared with controls in a fourth, independent cohort. Our findings reveal methylation changes at MET in the pathology of depression, possibly involved in downregulation of HGF/c-MET signalling the hippocampal region.


Assuntos
Metilação de DNA , Depressão/genética , Proteínas Proto-Oncogênicas c-met/genética , Adolescente , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Transcriptoma , Adulto Jovem
7.
EBioMedicine ; 46: 290-304, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31303497

RESUMO

BACKGROUND: While smoking is known to associate with development of multiple diseases, the underlying mechanisms are still poorly understood. Tobacco smoking can modify the chemical integrity of DNA leading to changes in transcriptional activity, partly through an altered epigenetic state. We aimed to investigate the impact of smoking on lung cells collected from bronchoalveolar lavage (BAL). METHODS: We profiled changes in DNA methylation (5mC) and its oxidised form hydroxymethylation (5hmC) using conventional bisulphite (BS) treatment and oxidative bisulphite treatment with Illumina Infinium MethylationEPIC BeadChip, and examined gene expression by RNA-seq in healthy smokers. FINDINGS: We identified 1667 total 5mC + 5hmC, 1756 5mC and 67 5hmC differentially methylated positions (DMPs) between smokers and non-smokers (FDR-adjusted P <.05, absolute Δß >0.15). Both 5mC DMPs and to a lesser extent 5mC + 5hmC were predominantly hypomethylated. In contrast, almost all 5hmC DMPs were hypermethylated, supporting the hypothesis that smoking-associated oxidative stress can lead to DNA demethylation, via the established sequential oxidation of which 5hmC is the first step. While we confirmed differential methylation of previously reported smoking-associated 5mC + 5hmC CpGs using former generations of BeadChips in alveolar macrophages, the large majority of identified DMPs, 5mC + 5hmC (1639/1667), 5mC (1738/1756), and 5hmC (67/67), have not been previously reported. Most of these novel smoking-associating sites are specific to the EPIC BeadChip and, interestingly, many of them are associated to FANTOM5 enhancers. Transcriptional changes affecting 633 transcripts were consistent with DNA methylation profiles and converged to alteration of genes involved in migration, signalling and inflammatory response of immune cells. INTERPRETATION: Collectively, these findings suggest that tobacco smoke exposure epigenetically modifies BAL cells, possibly involving a continuous active demethylation and subsequent increased activity of inflammatory processes in the lungs. FUND: The study was supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, the Stockholm County Council (ALF), the King Gustav's and Queen Victoria's Freemasons' Foundation, Knut and Alice Wallenberg Foundation, Neuro Sweden, and the Swedish MS foundation.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica , Expressão Gênica , Fumar Tabaco , Adulto , Lavagem Broncoalveolar , Biologia Computacional/métodos , Ilhas de CpG , Epigenômica/métodos , Feminino , Ontologia Genética , Genômica/métodos , Voluntários Saudáveis , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Fumar Tabaco/efeitos adversos , Adulto Jovem
8.
EBioMedicine ; 43: 411-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31053557

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is a chronic inflammatory disease and a leading cause of progressive neurological disability among young adults. DNA methylation, which intersects genes and environment to control cellular functions on a molecular level, may provide insights into MS pathogenesis. METHODS: We measured DNA methylation in CD4+ T cells (n = 31), CD8+ T cells (n = 28), CD14+ monocytes (n = 35) and CD19+ B cells (n = 27) from relapsing-remitting (RRMS), secondary progressive (SPMS) patients and healthy controls (HC) using Infinium HumanMethylation450 arrays. Monocyte (n = 25) and whole blood (n = 275) cohorts were used for validations. FINDINGS: B cells from MS patients displayed most significant differentially methylated positions (DMPs), followed by monocytes, while only few DMPs were detected in T cells. We implemented a non-parametric combination framework (omicsNPC) to increase discovery power by combining evidence from all four cell types. Identified shared DMPs co-localized at MS risk loci and clustered into distinct groups. Functional exploration of changes discriminating RRMS and SPMS from HC implicated lymphocyte signaling, T cell activation and migration. SPMS-specific changes, on the other hand, implicated myeloid cell functions and metabolism. Interestingly, neuronal and neurodegenerative genes and pathways were also specifically enriched in the SPMS cluster. INTERPRETATION: We utilized a statistical framework (omicsNPC) that combines multiple layers of evidence to identify DNA methylation changes that provide new insights into MS pathogenesis in general, and disease progression, in particular. FUND: This work was supported by the Swedish Research Council, Stockholm County Council, AstraZeneca, European Research Council, Karolinska Institutet and Margaretha af Ugglas Foundation.


Assuntos
Metilação de DNA , Imunidade , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Transdução de Sinais , Adulto , Idoso , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Ilhas de CpG , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/etiologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/etiologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Locos de Características Quantitativas , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(19): 9443-9452, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019085

RESUMO

An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-ß signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed "wound and keratinocyte migration-associated lncRNA 1" (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.


Assuntos
Movimento Celular , Queratinócitos/metabolismo , RNA Longo não Codificante/biossíntese , Transdução de Sinais , Pele/metabolismo , Cicatrização , Ferimentos e Lesões/metabolismo , Doença Crônica , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Humanos , Queratinócitos/patologia , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Ferimentos e Lesões/patologia
10.
Nat Commun ; 9(1): 4845, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451869

RESUMO

Circulating monocytes can compete for virtually any tissue macrophage niche and become long-lived replacements that are phenotypically indistinguishable from their embryonic counterparts. As the factors regulating this process are incompletely understood, we studied niche competition in the brain by depleting microglia with >95% efficiency using Cx3cr1CreER/+R26DTA/+ mice and monitored long-term repopulation. Here we show that the microglial niche is repopulated within weeks by a combination of local proliferation of CX3CR1+F4/80lowClec12a- microglia and infiltration of CX3CR1+F4/80hiClec12a+ macrophages that arise directly from Ly6Chi monocytes. This colonization is independent of blood brain barrier breakdown, paralleled by vascular activation, and regulated by type I interferon. Ly6Chi monocytes upregulate microglia gene expression and adopt microglia DNA methylation signatures, but retain a distinct gene signature from proliferating microglia, displaying altered surface marker expression, phagocytic capacity and cytokine production. Our results demonstrate that monocytes are imprinted by the CNS microenvironment but remain transcriptionally, epigenetically and functionally distinct.


Assuntos
Encéfalo/imunologia , Linhagem da Célula/imunologia , Regulação da Expressão Gênica/imunologia , Microglia/imunologia , Monócitos/imunologia , Transferência Adotiva , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos Ly/genética , Antígenos Ly/imunologia , Proteínas de Bactérias/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/efeitos da radiação , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Linhagem da Célula/efeitos da radiação , Proliferação de Células , Metilação de DNA , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Proteínas Luminescentes/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/efeitos da radiação , Monócitos/citologia , Monócitos/efeitos da radiação , Monócitos/transplante , Fagocitose , Receptores Mitogênicos/genética , Receptores Mitogênicos/imunologia , Transdução de Sinais , Quimeras de Transplante , Irradiação Corporal Total
11.
Nat Immunol ; 19(5): 1-7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662171

RESUMO

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Assuntos
Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Macrófagos/patologia , Medula Espinal/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
12.
Sci Rep ; 8(1): 4340, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515171

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

13.
J Invest Dermatol ; 138(4): 882-892, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29104160

RESUMO

Melanoma is one of the deadliest human cancers with limited therapeutic options. MicroRNAs are a class of short noncoding RNAs regulating gene expression at the post-transcriptional level. To identify important miRNAs in melanoma, we compared the miRNome of primary and metastatic melanomas in The Cancer Genome Atlas dataset and found lower miR-203 abundance in metastatic melanoma. Lower level of miR-203 was associated with poor overall survival in metastatic disease. We found that the methylation levels of several CpGs in the MIR203 promoter negatively correlated with miR-203 expression and that treatment with the demethylating agent 5-aza-2-deoxycytidine induced miR-203 expression, which was associated with demethylation of the promoter CpGs, in melanoma cell lines. In vitro, there was a decreased expression of miR-203 in melanoma cell lines in comparison with primary melanocytes. Ectopic overexpression of miR-203 suppressed cell motility, colony formation, and sphere formation as well as the angiogenesis-inducing capacity of melanoma cells. In vivo, miR-203 inhibited xenograft tumor growth and reduced lymph node and lung metastasis. SLUG was shown as a target of miR-203, and knockdown of SLUG recapitulated the effects of miR-203, whereas its restoration was able to reverse the miR-203-mediated suppression of cell motility. These results establish a role for miR-203 as a tumor suppressor in melanoma which suppresses both early and late steps of metastasis. Hence, restoration of miR-203 has therapeutic potential in melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , MicroRNAs/genética , RNA Neoplásico/genética , Neoplasias Cutâneas/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Estudo de Associação Genômica Ampla , Humanos , Melanoma/metabolismo , Melanoma/secundário , MicroRNAs/biossíntese , Regiões Promotoras Genéticas , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
Mult Scler ; 24(10): 1288-1300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28766461

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. OBJECTIVE: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). METHODS: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. RESULTS: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. CONCLUSION: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Adulto , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Regulação para Cima
15.
Sci Rep ; 7(1): 14589, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109506

RESUMO

Cigarette smoking is an established environmental risk factor for Multiple Sclerosis (MS), a chronic inflammatory and neurodegenerative disease, although a mechanistic basis remains largely unknown. We aimed at investigating how smoking affects blood DNA methylation in MS patients, by assaying genome-wide DNA methylation and comparing smokers, former smokers and never smokers in two Swedish cohorts, differing for known MS risk factors. Smoking affects DNA methylation genome-wide significantly, an exposure-response relationship exists and the time since smoking cessation affects methylation levels. The results also show that the changes were larger in the cohort bearing the major genetic risk factors for MS (female sex and HLA risk haplotypes). Furthermore, CpG sites mapping to genes with known genetic or functional role in the disease are differentially methylated by smoking. Modeling of the methylation levels for a CpG site in the AHRR gene indicates that MS modifies the effect of smoking on methylation changes, by significantly interacting with the effect of smoking load. Alongside, we report that the gene expression of AHRR increased in MS patients after smoking. Our results suggest that epigenetic modifications may reveal the link between a modifiable risk factor and the pathogenetic mechanisms.


Assuntos
Metilação de DNA , Esclerose Múltipla/complicações , Esclerose Múltipla/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Adolescente , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Ilhas de CpG , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Risco , Fumar/epidemiologia , Fumar/genética , Adulto Jovem
16.
Physiol Genomics ; 49(9): 447-461, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754822

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.


Assuntos
Pesquisa Biomédica , Epigênese Genética , Esclerose Múltipla/genética , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos
17.
Front Neuroendocrinol ; 32(1): 10-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20624414

RESUMO

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission. Although we are only beginning to be aware of the implication of chemokines in neuroendocrine functions, this review aims at summarizing what is known in that booming field of research. First we describe the expression of chemokines and their receptors in the CNS with a focus on the hypothalamo-pituitary system. Secondly, we present what is known on some chemokines in the regulation of neuroendocrine functions such as cell migration, stress, thermoregulation, drinking and feeding as well as anterior pituitary functions. We suggest that chemokines provide a fine modulatory tuning system of neuroendocrine regulations.


Assuntos
Quimiocinas/fisiologia , Sistemas Neurossecretores/fisiologia , Receptores de Quimiocinas/fisiologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Humanos , Modelos Biológicos , Sistemas Neurossecretores/metabolismo , Adeno-Hipófise/metabolismo , Adeno-Hipófise/fisiologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA