Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 52(7): 644-653, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38670798

RESUMO

Free (unbound) drug concentration at the site of action is the key determinant of biologic activity since only unbound drugs can exert pharmacological and toxicological effects. Unbound drug concentration in tumors for solid cancers is needed to understand/explain/predict pharmacokinetics, pharmacodynamics, and efficacy relations. Fraction unbound (fu ) in tumors is usually determined across several xenografted tumors derived from various cell lines in the drug discovery stage, which is time consuming and a resource burden. In this study, we determined the fu values for a set of diverse compounds (comprising acid, base, neutral, zwitterion, and covalent drugs) across five different xenografted tumors and five commercially available mouse tissues to explore the correlation of fu between tumors and the possibility of surrogate tissue(s) for tumor fu (fu,tumor) determination. The crosstumor comparison showed that fu,tumor values across tumors are largely comparable, and systematic tissue versus tumor comparison demonstrated that only lung tissue had comparable fu to all five tumors (fu values within twofold change for >80% compounds in both comparisons). These results indicated that mouse lung tissue can be used as a surrogate matrix for a fu,tumor assay. This study will increase efficiency in fu,tumor assessment and reduce animal use (adapting the replace, reduce, and refine principle) in drug discovery. SIGNIFICANCE STATEMENT: The free drug concept is a well accepted principle in drug discovery research. Currently, tumor fraction unbound (fu,tumor) is determined in several tumors derived from different cell lines to estimate free drug concentrations of a compound. The results from this study indicated that fu,tumor across xenografted tumors is comparable, and fu,tumor can be estimated using a surrogate tissue, mouse lung. The results will increase efficiency in fu,tumor assessment and reduce animal use in drug discovery.


Assuntos
Pulmão , Animais , Camundongos , Humanos , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Feminino
2.
Biochem Biophys Res Commun ; 637: 267-275, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36410276

RESUMO

Phosphoinositide 3-kinase (PI3K) pathway mediates key signaling events downstream to B-cell receptor (BCR) for survival of mature B-cells, and overexpression or overactivation of PI3Kδ is crucial for B-cell malignancies such as diffuse large B-cell lymphoma (DLBCL). Small molecule PI3Kδγ inhibitors, with a known potential to reduce activated B-cell (ABC)-DLBCL transformation, form an important class of therapeutics approved for follicular lymphoma (FL), chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL). In this study, we describe discovery of a potent, selective and efficacious dual PI3Kδγ inhibitor, LL-00084282, having a differentiated efficacy profile in human ABC- and germinal center B-cell (GCB)-DLBCL cell lines. LL-00084282 displayed high potency and superior PI3Kδγ engagement with excellent selectivity over other PI3K isoforms at both IC50/90 concentrations in biochemical and cell-based assays. In contrast to selective PI3Kδ inhibitors, LL-00084282 showed superior and potent anticancer activity in both ABC- and GCB-DLBCL cell lines. LL-00084282 demonstrated in-vivo efficacy in OCI-Ly10 and SU-DHL-6 xenografts with good tolerability. Furthermore, LL-00084282 inhibited pro-inflammatory cytokine secretion and reduced basophil activation in human PBMCs, showing potential implications in immunoinflammatory conditions. Good pharmacokinetic properties in higher species and desirable efficacy profile highlights potential of this novel PI3Kδγ inhibitor for further clinical evaluation in DLBCL patients.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Linfócitos B , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA