Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(20)2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39451213

RESUMO

Synovial sarcoma (SS) is one of the most common types of pediatric soft tissue sarcoma (STS) being far less frequent in adults. This STS type is characterized by one specific chromosomal translocation SS18-SSX and the associated changes in signaling. However, other genetic and epigenetic abnormalities in SS do not necessarily include SS18-SSX-related events, but abnormalities are more sporadic and do not correlate well with the prognosis and response to therapy. Currently, targeted therapy for synovial sarcoma includes a limited range of drugs, and surgical resection is the mainstay treatment for localized cancer with adjuvant or neoadjuvant chemotherapy and radiotherapy. Understanding the molecular characteristics of synovial sarcoma subtypes is becoming increasingly important for detecting new potential targets and developing innovative therapies. Novel approaches to treating synovial sarcoma include immune-based therapies (such as TCR-T cell therapy to NY-ESO-1, MAGE4, PRAME or using immune checkpoint inhibitors), epigenetic modifiers (HDAC inhibitors, EZH2 inhibitors, BRD disruptors), as well as novel or repurposed receptor tyrosine kinase inhibitors. In the presented review, we aimed to summarize the genetic and epigenetic landscape of SS as well as to find out the potential niches for the development of novel diagnostics and therapies.


Assuntos
Heterogeneidade Genética , Sarcoma Sinovial , Sarcoma Sinovial/genética , Sarcoma Sinovial/terapia , Sarcoma Sinovial/patologia , Sarcoma Sinovial/metabolismo , Humanos , Epigênese Genética , Terapia de Alvo Molecular , Imunoterapia/métodos
2.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201590

RESUMO

Glucocorticoids (GCs) are widely used for treating hematological malignancies despite their multiple adverse effects. The biological response to GCs relies on glucocorticoid receptor (GR) transrepression (TR) that mediates the anticancer effects and transactivation (TA) associated with the side effects. Selective GR agonists (SEGRAs) preferentially activating GR TR could offer greater benefits in cancer treatment. One of the well-characterized SEGRAs, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium-chloride (CpdA), exhibited anticancer activity; however, its translational potential is limited due to chemical instability. To overcome this limitation, we obtained CpdA derivatives, CpdA-01-CpdA-08, employing two synthetic strategies and studied their anti-tumor activity: 4-(1-hydroxy-2-(piperidin-1-yl)ethyl)phenol or CpdA-03 demonstrated superior GR affinity and stability compared to CpdA. In lymphoma Granta and leukemia CEM cell lines, CpdA-03 ligand exhibited typical SEGRA properties, inducing GR TR without triggering GR TA. CpdA-03 effects on cell viability, growth, and apoptosis were similar to the reference GR ligand, dexamethasone (Dex), and the source compound CpdA. In vivo testing of CpdA-03 activity against lymphoma on the transplantable P388 murine lymphoma model showed that CpdA-03 reduced tumor volume threefold, outperforming Dex and CpdA. In conclusion, in this work, we introduce a novel SEGRA CpdA-03 as a promising agent for lymphoma treatment with fewer side effects.


Assuntos
Antineoplásicos , Receptores de Glucocorticoides , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenetilaminas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Acetatos , Tiramina/análogos & derivados
3.
Cancers (Basel) ; 16(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254762

RESUMO

Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.

4.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139366

RESUMO

This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.


Assuntos
Citrus , Sinefrina , Animais , Sinefrina/efeitos adversos , Receptores de Glucocorticoides/metabolismo , Extratos Vegetais/farmacologia , Anti-Inflamatórios , Citrus/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077083

RESUMO

Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.


Assuntos
Glucocorticoides , Neoplasias , Fatores de Transcrição/metabolismo , Glucocorticoides/farmacologia , Humanos , Inflamação , Neoplasias/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais
6.
Mol Cancer Ther ; 19(9): 1898-1908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546661

RESUMO

Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitor+Dexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.


Assuntos
Glucocorticoides/uso terapêutico , Linfoma/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Glucocorticoides/farmacologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA