Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(25): 7858-7866, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708310

RESUMO

Hybrid lipid nanoparticles containing gold nanoparticles (LNP-GNPs) and drugs have potential for imaging applications as well as triggered release of LNP contents in response to pulsed laser or X-ray radiation mediated by the GNPs. However, methods to synthesize LNP-GNP systems that efficiently entrap GNPs (the potential triggered release and imaging agent) and then load and retain the drug cargo in a manner that may have clinical applications have proven elusive. Here, we develop a straightforward "bottom-up" approach to manufacture drug-loaded LNP-GNP systems. We show that negatively charged GNPs of 5 nm diameter can be stably loaded into LNPs containing 10 mol % ionizable cationic lipid using an ethanol dilution, rapid mixing approach and that these systems also exhibit aqueous compartments. Further, we show that such systems can also entrap ammonium sulfate, enabling pH-dependent loading of the weak base anti-cancer drug doxorubicin into the aqueous compartments. Cryo-transmission electron microscopy (Cryo-TEM) imaging clearly demonstrates the presence of GNPs in the interior of the resulting hybrid nanostructures as well as the formation of electron-dense drug precipitates in the aqueous core of the LNP-GNPs. The approach described here is a robust and straightforward method to generate hybrid LNP-GNP-drug and other LNP-metal nanoparticle-drug systems with potential applications for a variety of triggered release protocols.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Doxorrubicina/química , Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Nanopartículas/química
2.
ACS Nano ; 15(12): 19244-19255, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34843205

RESUMO

Nanoparticles are a promising solution for delivery of a wide range of medicines and vaccines. Optimizing their design depends on being able to resolve, understand, and predict biophysical and therapeutic properties, as a function of design parameters. While existing tools have made great progress, gaps in understanding remain because of the inability to make detailed measurements of multiple correlated properties. Typically, an average measurement is made across a heterogeneous population, obscuring potentially important information. In this work, we develop and apply a method for characterizing nanoparticles with single-particle resolution. We use convex lens-induced confinement (CLiC) microscopy to isolate and quantify the diffusive trajectories and fluorescent intensities of individual nanoparticles trapped in microwells for long times. First, we benchmark detailed measurements of fluorescent polystyrene nanoparticles against prior data to validate our approach. Second, we apply our method to investigate the size and loading properties of lipid nanoparticle (LNP) vehicles containing silencing RNA (siRNA), as a function of lipid formulation, solution pH, and drug-loading. By taking a comprehensive look at the correlation between the intensity and size measurements, we gain insights into LNP structure and how the siRNA is distributed in the LNP. Beyond introducing an analytic for size and loading, this work allows for future studies of dynamics with single-particle resolution, such as LNP fusion and drug-release kinetics. The prime contribution of this work is to better understand the connections between microscopic and macroscopic properties of drug-delivery vehicles, enabling and accelerating their discovery and development.


Assuntos
Portadores de Fármacos , Nanopartículas , Lipossomos , Tamanho da Partícula , RNA Interferente Pequeno
3.
Small ; 17(37): e2103025, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34337865

RESUMO

Successfully employing small interfering RNA (siRNA) therapeutics requires the use of nanotechnology for efficient intracellular delivery. Lipid nanoparticles (LNPs) have enabled the approval of various nucleic acid therapeutics. A major advantage of LNPs is the interchangeability of its building blocks and RNA payload, which allow it to be a highly modular system. In addition, drug derivatization approaches can be used to synthesize lipophilic small molecule prodrugs that stably incorporate in LNPs. This provides ample opportunities to develop combination therapies by co-encapsulating multiple therapeutic agents in a single formulation. Here, it is described how the modular LNP platform is applied for combined gene silencing and chemotherapy to induce additive anticancer effects. It is shown that various lipophilic taxane prodrug derivatives and siRNA against the androgen receptor, a prostate cancer driver, can be efficiently and stably co-encapsulated in LNPs without compromising physicochemical properties or gene-silencing ability. Moreover, it is demonstrated that the combination therapy induces additive therapeutic effects in vitro. Using a double-radiolabeling approach, the pharmacokinetic properties and biodistribution of LNPs and prodrugs following systemic administration in tumor-bearing mice are quantitatively determined. These results indicate that co-encapsulating siRNA and lipophilic prodrugs into LNPs is an attractive and straightforward plug-and-play approach for combination therapy development.


Assuntos
Nanopartículas , Pró-Fármacos , Animais , Lipídeos , Camundongos , RNA Interferente Pequeno , Tecnologia , Distribuição Tecidual
4.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L377-L391, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105356

RESUMO

Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-ß1 (TGF-ß1). To determine the role of FAM13A in TGF-ß1 signaling, FAM13A-/- airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles. Wild-type (WT) and FAM13A-/- cells were treated with TGF-ß1, followed by gene and/or protein expression analyses. FAM13A-/- cells augmented TGF-ß1-induced increase in collagen type 1 (COL1A1), matrix metalloproteinase 2 (MMP2), expression compared with WT cells. This effect was mediated by an increase in ß-catenin (CTNNB1) expression in FAM13A-/- cells compared with WT cells after TGF-ß1 treatment. FAM13A overexpression was partially protective from TGF-ß1-induced COL1A1 expression. Finally, we showed that airway epithelial-specific FAM13A protein expression is significantly increased in patients with severe COPD compared with control nonsmokers, and negatively correlated with lung function. In contrast, ß-catenin (CTNNB1), which has previously been linked to be regulated by FAM13A, is decreased in the airway epithelium of smokers with COPD compared with non-COPD subjects. Together, our data showed that FAM13A may be protective from TGF-ß1-induced fibrotic response in the airway epithelium via sequestering CTNNB1 from its regulation on downstream targets. Therapeutic increase in FAM13A expression in the airway epithelium of smokers at risk for COPD, and those with mild COPD, may reduce the extent of airway tissue remodeling.


Assuntos
Remodelação das Vias Aéreas , Proteínas Ativadoras de GTPase/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Fumar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Idoso , Linhagem Celular , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Fumar/genética , Fumar/patologia , Fator de Crescimento Transformador beta1/genética , beta Catenina/biossíntese , beta Catenina/genética
5.
Nat Nanotechnol ; 16(6): 630-643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059811

RESUMO

The increasing number of approved nucleic acid therapeutics demonstrates the potential to treat diseases by targeting their genetic blueprints in vivo. Conventional treatments generally induce therapeutic effects that are transient because they target proteins rather than underlying causes. In contrast, nucleic acid therapeutics can achieve long-lasting or even curative effects via gene inhibition, addition, replacement or editing. Their clinical translation, however, depends on delivery technologies that improve stability, facilitate internalization and increase target affinity. Here, we review four platform technologies that have enabled the clinical translation of nucleic acid therapeutics: antisense oligonucleotides, ligand-modified small interfering RNA conjugates, lipid nanoparticles and adeno-associated virus vectors. For each platform, we discuss the current state-of-the-art clinical approaches, explain the rationale behind its development, highlight technological aspects that facilitated clinical translation and provide an example of a clinically relevant genetic drug. In addition, we discuss how these technologies enable the development of cutting-edge genetic drugs, such as tissue-specific nucleic acid bioconjugates, messenger RNA and gene-editing therapeutics.


Assuntos
Vetores Genéticos/uso terapêutico , Nanopartículas/uso terapêutico , Ácidos Nucleicos/uso terapêutico , Acetilgalactosamina/análogos & derivados , Acetilgalactosamina/uso terapêutico , Edição de Genes/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Humanos , Lipídeos/química , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/farmacologia , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Pirrolidinas/uso terapêutico , RNA Interferente Pequeno/química , RNA Interferente Pequeno/uso terapêutico
6.
Adv Drug Deliv Rev ; 159: 344-363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32622021

RESUMO

Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.


Assuntos
Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Lipídeos/administração & dosagem , Fígado/metabolismo , Nanopartículas/administração & dosagem , Animais , Humanos , Nanotecnologia
7.
Drug Deliv Transl Res ; 10(1): 202-215, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31482519

RESUMO

Quercetin (3,3',4',5,7-pentahydroxyflavone) is a naturally derived flavonoid that is commonly found in fruits and vegetables. There is mounting evidence to suggest that quercetin has potential anticancer effects and appears to interact synergistically when used in combination with approved chemotherapeutic agents such as irinotecan and cisplatin. Unfortunately, quercetin has shown limited clinical utility, partly due to low bioavailability related to its poor aqueous solutions (< 10 µg/mL). In this study, liposomal formulations of quercetin were developed by exploiting quercetin's ability to bind copper. Quercetin powder was added directly to pre-formed copper-containing liposomes (2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol (CHOL) (55:45 M ratio)). As a function of time and temperature, the formation of copper-quercetin was measured. Using this methodology, a final quercetin-to-lipid (mol:mol) ratio of 0.2 was achievable and solutions containing quercetin at concentrations of > 5 mg/mL were attained, representing at least a > 100-fold increase in apparent solubility. The resulting formulation was suitable for intravenous dosing with no overt toxicities when administered at doses of 50 mg/kg in mice. Pharmacokinetic studies demonstrated that the copper-quercetin formulations had an AUC0-24H of 8382.1 µg h/mL when administered to mice at 50 mg/kg. These studies suggested that quercetin (not copper-quercetin) dissociates from the liposomes after administration. The resulting formulation is suitable for further development and also serves as a proof-of-concept for formulating other flavonoids and flavonoid-like compounds. Given that quercetin exhibits an IC50 of >10 µM when tested against cancer cell lines, we believe that the utility of this novel quercetin formulation for cancer indications will ultimately be as a component of a combination product.


Assuntos
Cobre/química , Composição de Medicamentos/métodos , Quercetina/administração & dosagem , Soro/química , Células A549 , Administração Intravenosa , Animais , Área Sob a Curva , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Infusões Parenterais , Lipossomos , Camundongos , Quercetina/química , Quercetina/farmacocinética , Quercetina/farmacologia
8.
Mol Pharm ; 16(9): 3957-3967, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31381352

RESUMO

Curcumin exhibits potent anticancer activity via various mechanisms, but its in vivo efficacy has been hampered by poor solubility. Nanotechnology has been employed to deliver curcumin, but most of the reported systems suffered from low drug loading capacity and poor stability. Here, we report the development and optimization of a liposomal formulation for curcumin (Lipo-Cur) using an automated microfluidic technology. Lipo-Cur exhibited a mean diameter of 120 nm with a low polydispersity index (<0.2) and superior loading capacity (17 wt %) compared to other reported liposomal systems. Lipo-Cur increased the water solubility of curcumin by 700-fold, leading to 8-20-fold increased systemic exposure compared to the standard curcumin suspension formulation. When coadministered with cisplatin to tumor-bearing mice, Lipo-Cur augmented the antitumor efficacy of cisplatin in multiple mouse tumor models and decreased the nephrotoxicity. This is the first report demonstrating the dual effects of curcumin enabled by a nanoformulation in enhancing the efficacy and reducing the toxicity of a chemo-drug in animal models under a single and low dose administration.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Curcumina/química , Dimiristoilfosfatidilcolina/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Curcumina/administração & dosagem , Curcumina/farmacocinética , Dimiristoilfosfatidilcolina/administração & dosagem , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Quimioterapia Combinada , Feminino , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanotecnologia/métodos , Solubilidade , Distribuição Tecidual
9.
Acc Chem Res ; 52(9): 2435-2444, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31397996

RESUMO

Delivering nucleic acid-based therapeutics to cells is an attractive approach to target the genetic cause of various diseases. In contrast to conventional small molecule drugs that target gene products (i.e., proteins), genetic drugs induce therapeutic effects by modulating gene expression. Gene silencing, the process whereby protein production is prevented by neutralizing its mRNA template, is a potent strategy to induce therapeutic effects in a highly precise manner. Importantly, gene silencing has broad potential as theoretically any disease-causing gene can be targeted. It was demonstrated two decades ago that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm results in specific degradation of complementary mRNA via a process called RNA interference (RNAi). Since then, significant efforts and investments have been made to exploit RNAi therapeutically and advance siRNA drugs to the clinic. Utilizing (unmodified) siRNA as a therapeutic, however, is challenging due to its limited bioavailability following systemic administration. Nuclease activity and renal filtration result in siRNA's rapid clearance from the circulation and its administration induces (innate) immune responses. Furthermore, siRNA's unfavorable physicochemical characteristics largely prevent its diffusion across cellular membranes, impeding its ability to reach the cytoplasm where it can engage the RNAi machinery. The clinical translation of siRNA therapeutics has therefore been dependent on chemical modifications and developing sophisticated delivery platforms to improve their stability, limit immune activation, facilitate internalization, and increase target affinity. These developments have resulted in last year's approval of the first siRNA therapeutic, called Onpattro (patisiran), for treatment of hereditary amyloidogenic transthyretin (TTR) amyloidosis. This disease is characterized by a mutation in the gene encoding TTR, a serum protein that transports retinol in circulation following secretion by the liver. The mutation leads to production of misfolded proteins that deposit as amyloid fibrils in multiple organs, resulting in progressive neurodegeneration. Patisiran's therapeutic effect relies on siRNA-mediated TTR gene silencing, preventing mutant protein production and halting or even reversing disease progression. For efficient therapeutic siRNA delivery to hepatocytes, patisiran is critically dependent on lipid nanoparticle (LNP) technology. In this Account, we provide an overview of key advances that have been crucial for developing LNP delivery technology, and we explain how these developments have contributed to the clinical translation of siRNA therapeutics for parenteral administration. We discuss optimization of the LNP formulation, particularly focusing on the rational design of ionizable cationic lipids and poly(ethylene glycol) lipids. These components have proven to be instrumental for highly efficient siRNA encapsulation, favorable LNP pharmacokinetic parameters, and hepatocyte internalization. Additionally, we pay attention to the development of rapid mixing-based methods that provide robust and scalable LNP production procedures. Finally, we highlight patisiran's clinical translation and LNP delivery technology's potential to enable the development of genetic drugs beyond the current state-of-the-art, such as mRNA and gene editing therapeutics.


Assuntos
Terapia Genética , Lipídeos/química , Nanopartículas/química , Neoplasias/terapia , RNA Interferente Pequeno/genética , Animais , Humanos
10.
Nucleic Acid Ther ; 28(3): 146-157, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29683383

RESUMO

Genetic drugs based on RNA or DNA have remarkable therapeutic potential as virtually any disease can be treated by silencing a pathological gene, expressing a beneficial protein, or by editing defective genes. However, therapies based on nucleic acid polymers require sophisticated delivery systems to deliver these macromolecules to the interior of target cells. In this study, we review progress in developing nonviral lipid nanoparticle (LNP) delivery systems that have attractive properties, including ease of manufacture, reduced immune responses, multidosing capabilities, larger payloads, and flexibility of design. LNP systems represent the most advanced delivery systems for genetic drugs as it is expected that an LNP-short interfering RNA (siRNA) formulation will receive clinical approval from the Food and Drug Administration (FDA) in 2018 for treatment of the hereditary condition transthyretin-mediated amyloidosis, a fatal condition for which there is currently no treatment. This achievement is largely due to the development of optimized ionizable cationic lipids, arguably the most important factor in the clinical success of LNP-siRNA. In addition, we highlight potential LNP applications, including targeting tissues beyond the liver and therapeutic approaches based on messenger RNA or Clustered Regularly Interspaced Short Palindromic Repeats/Cas.


Assuntos
Neuropatias Amiloides Familiares/terapia , Técnicas de Transferência de Genes , Lipídeos/química , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/genética , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Animais , Cátions , Ensaios Clínicos como Assunto , Terapia Genética/métodos , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Hipercolesterolemia/terapia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma/terapia , Nanopartículas/química , Nanopartículas/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/uso terapêutico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Viroses/genética , Viroses/patologia , Viroses/terapia , Viroses/virologia
11.
Nanomedicine ; 13(4): 1377-1387, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28038954

RESUMO

Lipid nanoparticles (LNPs) containing distearoylphosphatidlycholine (DSPC), and ionizable amino-lipids such as dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA) are potent siRNA delivery vehicles in vivo. Here we explore the utility of similar LNP systems as transfection reagents for plasmid DNA (pDNA). It is shown that replacement of DSPC by unsaturated PCs and DLin-MC3-DMA by the related lipid DLin-KC2-DMA resulted in highly potent transfection reagents for HeLa cells in vitro. Further, these formulations exhibited excellent transfection properties in a variety of mammalian cell lines and transfection efficiencies approaching 90% in primary cell cultures. These transfection levels were equal or greater than achieved by Lipofectamine, with much reduced toxicity. Finally, microinjection of LNP-eGFP into the limb bud of a chick embryo resulted in robust reporter-gene expression. It is concluded that LNP systems containing ionizable amino lipids can be highly effective, non-toxic pDNA delivery systems for gene expression both in vitro and in vivo.


Assuntos
DNA/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Plasmídeos/química , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Células HeLa , Humanos , Camundongos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA