Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Biol Macromol ; 274(Pt 2): 133289, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908639

RESUMO

Captopril is a thiol drug, widely used for the management of hypertension and cardiovascular diseases. Reactive thiols are found to covalently modify the cysteines of plasma proteins and affect their structure and function. Human serum albumin (HSA) is prone to undergo modification by various low molecular weight compounds, including drugs. Cysteine34 (Cys34) in HSA has a free thiol group with antioxidant properties, considered to be the most redox-sensitive amino acid in plasma. Through mass-spectrometric analysis, we demonstrate for the first time that captopril forms a disulfide adduct at Cys34 residue and increases the protease susceptibility of HSA to trypsin. As evidenced by our biophysical and electron microscopy studies, HSA undergoes structural alteration, aggregation and morphological changes when treated with different captopril concentrations. Molecular dynamics studies further revealed the regions of secondary structural changes in HSA due to disulfide adduct formation by captopril at Cys34. It also elucidated the residues involved in the noncovalent interactions with captopril. It is envisaged that structural change in HSA may influence the efficacy of drug delivery as well as its own biological function. These findings may thus provide significant insights into the field of pharmacology intriguing further investigation into the effects of long-term captopril treatment.

2.
Food Chem Toxicol ; 188: 114667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653447

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.


Assuntos
Compostos Benzidrílicos , Cricetulus , Ácidos Graxos , Insulina , Fenóis , Transdução de Sinais , Sulfonas , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Animais , Camundongos , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos/metabolismo , Células CHO , Sulfonas/toxicidade , Células 3T3-L1 , Disruptores Endócrinos/toxicidade , Resistência à Insulina , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
3.
Plant Physiol Biochem ; 189: 126-138, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36084528

RESUMO

Glyphosate residues retained in the growing meristematic tissues or in grains of glyphosate-resistant crops affect the plants physiological functions and crop yield. Removing glyphosate residues in the plants is desirable with no penalty on crop yield and quality. We report a new combination of scientific strategy to detoxify glyphosate that reduces the residual levels and improve crop resistance. The glyphosate detoxifying enzymes Aldo-keto reductase (AKR1) and mutated glycine oxidase (mGO) with different modes of action were co-expressed with modified EPSPS, which is insensitive to glyphosate in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). The transgenic tobacco plants expressing individual PsAKR1, mGO, CP4-EPSPS, combinations of PsAKR1:CP4EPSPS, PsAKR1:mGO, and multigene with PsAKR1: mGO: CP4EPSPS genes were developed. The bio-efficacy studies of in-vitro leaf regeneration on different concentrations of glyphosate, seedling bioassay, and spray on transgenic tobacco plants demonstrate that glyphosate detoxification with enhanced resistance. Comparative analysis of the transgenic tobacco plants reveals that double and multigene expressing transgenics had reduced accumulation of shikimic acid, glyphosate, and its primary residue AMPA, and increased levels of sarcosine were observed in all PsAKR1 expressing transgenics. The multigene expressing rice transgenics showed improved glyphosate resistance with yield maintenance. In summary, results suggest that stacking genes with two different detoxification mechanisms and insensitive EPSPS is a potential approach for developing glyphosate-resistant plants with less residual content.


Assuntos
Herbicidas , Oryza , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Aldo-Ceto Redutases , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Óxido de Magnésio , Plantas Geneticamente Modificadas , Sarcosina/genética , Ácido Chiquímico , Nicotiana/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glifosato
4.
ACS Omega ; 7(27): 23115-23126, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847342

RESUMO

Post-translational modifications remarkably regulate proteins' biological function. Small molecules such as reactive thiols, metabolites, and drugs may covalently modify the proteins and cause structural changes. This study reports the covalent modification and noncovalent interaction of insulin and captopril, an FDA-approved antihypertensive drug, through mass spectrometric and computation-based approaches. Mass spectrometric analysis shows that captopril modifies intact insulin, reduces it into its "A" and "B" chains, and covalently modifies them by forming adducts. Since captopril has a reactive thiol group, it might reduce the insulin dimer or modify it by reacting with cysteine residues. This was proven with dithiothreitol treatment, which reduced the abundance of captopril adducts of insulin A and B chains and intact Insulin. Liquid chromatography tandem mass spectrometric analysis identified the modification of a total of four cysteine residues, two in each of the A and B chains of insulin. These modifications were identified to be Cys6 and Cys7 of the A chain and Cys7 and Cys19 of the B chain. Mass spectrometric analysis indicated that captopril may simultaneously modify the cysteine residues of intact insulin or its subunits A and B chains. Biophysical studies involving light scattering and thioflavin T assay suggested that the binding of captopril to the protein leads to the formation of aggregates. Docking and molecular dynamics studies provided insights into the noncovalent interactions and associated structural changes in insulin. This work is a maiden attempt to understand the detailed molecular interactions between captopril and insulin. These findings suggest that further investigations are required to understand the long-term effect of drugs like captopril.

5.
J Proteomics ; 208: 103481, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31394310

RESUMO

Prediabetes is a risk factor for the development of diabetes. Early diagnosis of prediabetes may prevent the onset and progression of diabetes and its associated complications. Therefore, this study aimed at the identification of novel markers for efficient prediction of prediabetes. In this pursuit, we have evaluated the ability of glycated peptides of albumin in predicting prediabetes. Glycated peptides of in vitro glycated albumin were characterized by data dependent acquisition and parallel reaction monitoring using LC-HRMS. Amongst 14 glycated peptides characterized in vitro, four peptides, particularly, FK(CML)DLGEENFK, K(AML)VPQVSTPTLVEVSR, K(CML)VPQVSTPTLVEVSR, and K(AML)QTALVELVK, corresponding to 3 glucose sensitive lysine residues K36, K438, and K549, respectively showed significantly higher abundance in prediabetes than control. Additionally, the abundance of three of these peptides, namely K(AML)QTALVELVK, K(CML)VPQVSTPTLVEVSR and FK(CML)DLGEENFK was >1.8-fold in prediabetes, which was significantly higher than the differences observed for FBG, PPG, and HbA1c. Further, the four glycated peptides showed a significant correlation with FBG, PPG, HbA1c, triglycerides, VLDL, and HDL. This study supports that glycated peptides of glucose sensitive lysine residues K36, K438 and K549 of albumin could be potentially useful markers for prediction of prediabetes. SIGNIFICANCE: Undiagnosed prediabetes may lead to diabetes and associated complications. This study reports targeted quantification of four glycated peptides particulary FK(CML)DLGEENFK, K(AML)VPQVSTPTLVEVSR, K(CML)VPQVSTPTLVEVSR, and K(AML)QTALVELVK, corresponding to 3 glucose sensitive lysine residues K36, K438 and K549 respectively by parallel reaction monitoring in healthy and prediabetic subjects. These peptides showed significantly higher abundance in prediabetes than healthy subjects, and showed significant correlation with various clinical parameters including FBG, PPG, HbA1c, and altered lipid profile. Therefore, together these four peptides constitute a panel of markers that can be useful for prediction of prediabetes.


Assuntos
Estado Pré-Diabético/metabolismo , Albumina Sérica Humana/metabolismo , Feminino , Glucose/metabolismo , Glicosilação , Humanos , Lisina/metabolismo , Masculino
6.
Mol Biosyst ; 13(11): 2303-2309, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28875213

RESUMO

Adhesive interactions between molecules on tumor cells and those on target organs play a key role in organ specific metastasis. Poly-N-acetyl-lactosamine (polyLacNAc) substituted N-oligosaccharides on melanoma cell surface glycoproteins promote lung specific metastasis via galectin-3 by facilitating their arrest and extravasation. This study reports the identification and characterization of galectin-3 interacting proteins using a combination of galectin-3 sepharose affinity and leucoagglutinating phytohemagglutinin (L-PHA) columns. A total of 83 proteins were identified as galectin-3 interacting glycoproteins, of which 35 were constituents of the L-PHA bound fraction, suggesting that these proteins carry polyLacNAc substituted ß1,6 branched N-glycans. The identities of some of these proteins, like LAMP-1, LAMP-3, basigin, embigin, and α5 and ß1 Integrin, have been confirmed by western blotting, and functional relevance with respect to metastatic properties has been established.


Assuntos
Proteínas de Transporte/metabolismo , Galectina 3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Espectrometria de Massas , Melanoma/patologia , Mapeamento de Interação de Proteínas/métodos , Animais , Cromatografia de Afinidade , Cromatografia Líquida , Espectrometria de Massas/métodos , Melanoma Experimental , Camundongos , Ligação Proteica , Reprodutibilidade dos Testes , Fluxo de Trabalho
7.
Methods Mol Biol ; 1619: 403-416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674900

RESUMO

Glycated human serum albumin (HSA) serves as an important marker for monitoring the glycemic status. Developing methods for unambiguous identification and quantification of glycated peptides of HSA using high-throughput technologies such as mass spectrometry has a great clinical significance. The following protocol describes the construction of reference spectral libraries for Amadori-modified lysine (AML), N(ε)-(carboxymethyl) lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of synthetically modified HSA using high-resolution mass spectrometers. The protocol also describes work flows, for unambiguous identification and quantification of glycated modified peptides of HSA in clinical plasma using standard spectral libraries by various mass spectrometry approaches such as parallel reaction monitoring (PRM), sequential window acquisition of all theoretical fragment ion spectra (SWATH), and MSE.


Assuntos
Peptídeos , Albumina Sérica Humana , Cromatografia Líquida , Glicosilação , Humanos , Espectrometria de Massas , Oxirredução , Peptídeos/química , Albumina Sérica Humana/química
8.
J Physiol Biochem ; 72(2): 327-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27048415

RESUMO

Protective and prophylactic effects of omega-3 fatty acids on oxidative stress and inflammation are well known. We assessed beneficial effects of flaxseed oil and fish oil on streptozotocin (65 mg/kg; i.p.)-nicotinamide (110 mg/kg; i.p.) induced diabetic rats by studying renal expression of antioxidant and inflammatory genes. Diabetic rats given 10 % flaxseed oil or 10 % fish oil diet for 35 days showed significant decrease in renal lipid peroxidation. Flaxseed oil diet resulted in up-regulation of renal superoxide dismutase-1 (SOD-1) (activity and expression) and glutathione peroxidase-1 (GPx-1) expression. Furthermore, both diets up-regulated catalase (CAT) (activity and expression) and down-regulated heme oxygenase-1 (HO-1) expression. Both diets were able to limit the renal advanced glycation end products (AGEs) formation and reduced receptor of AGE (RAGE) protein expression significantly. Expressions of interleukin-6 (IL-6) and NF-κB p65 subunit were down-regulated significantly by flaxseed oil or fish oil diet. The histological tubular injuries were also lowered by both diets. These results suggest that dietary ω-3 fatty acids may slow the progression of diabetic nephropathy (DN) associated with oxidative stress, glycation, and inflammation in the kidney.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Gorduras Insaturadas na Dieta/uso terapêutico , Óleos de Peixe/uso terapêutico , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Rim/metabolismo , Óleo de Semente do Linho/uso terapêutico , Estresse Oxidativo , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ácidos Graxos Ômega-3/uso terapêutico , Regulação da Expressão Gênica , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Rim/imunologia , Rim/patologia , Peroxidação de Lipídeos , Masculino , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Niacinamida , Distribuição Aleatória , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Estreptozocina
9.
Mol Cell Proteomics ; 14(8): 2150-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26023067

RESUMO

Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified albumin using high resolution accurate mass spectrometry (HR/AM). The glycated peptides were manually inspected and validated for their modification. Further, the fragment ion library was used for quantification of glycated peptides of albumin in the context of diabetes. Targeted Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH) analysis in pooled plasma samples of control, prediabetes, diabetes, and microalbuminuria, has led to identification and quantification of 13 glycated peptides comprised of four AML, seven CML, and two CEL modifications, representing nine lysine sites of albumin. Five lysine sites namely K549, K438, K490, K88, and K375, were observed to be highly sensitive for glycation modification as their respective m/z showed maximum fold change and had both AML and CML modifications. Thus, peptides involving these lysine sites could be potential novel markers to assess the degree of glycation in diabetes.


Assuntos
Albuminúria/metabolismo , Diabetes Mellitus/metabolismo , Biblioteca de Peptídeos , Peptídeos/metabolismo , Estado Pré-Diabético/metabolismo , Albumina Sérica/metabolismo , Espectrometria de Massas em Tandem/métodos , Albuminúria/sangue , Sequência de Aminoácidos , Análise de Variância , Diabetes Mellitus/sangue , Produtos Finais de Glicação Avançada , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Albumina Sérica/química , Albumina Sérica Glicada
10.
Proteomics ; 15(2-3): 245-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315903

RESUMO

The receptor for advanced glycation end products (RAGE) is one of the most important proteins implicated in diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. It is a pattern recognition receptor by virtue of its ability to interact with multiple ligands, RAGE activates several signal transduction pathways through involvement of various kinases that phosphorylate their respective substrates. Only few substrates have been known to be phosphorylated in response to activation by RAGE (e.g., nuclear factor kappa B); however, it is possible that these kinases can phosphorylate multiple substrates depending upon their expression and localization, leading to altered cellular responses in different cell types and conditions. One such example is, glycogen synthase kinase 3 beta which is known to phosphorylate glycogen synthase, acts downstream to RAGE, and hyperphosphorylates microtubule-associated protein tau causing neuronal damage. Thus, it is important to understand the role of various RAGE-activated kinases and their substrates. Therefore, we have reviewed here the details of RAGE-activated kinases in response to different ligands and their respective phosphoproteome. Furthermore, we discuss the analysis of the data mined for known substrates of these kinases from the PhosphoSitePlus (http://www.phosphosite.org) database, and the role of some of the important substrates involved in cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In summary, this review provides information on RAGE-activated kinases and their phosphoproteome, which will be helpful in understanding the possible role of RAGE and its ligands in progression of diseases.


Assuntos
Proteínas Quinases/metabolismo , Proteômica/métodos , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação , Proteoma/metabolismo , Receptor para Produtos Finais de Glicação Avançada
11.
Mol Cancer ; 13: 204, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25178635

RESUMO

BACKGROUND: Despite modern advances in treatment, skin cancer is still one of the most common causes of death in the western countries. Chemotherapy plays an important role in melanoma management. Tamoxifen has been used either alone or in- combination with other chemotherapeutic agents to treat melanoma. However, response rate of tamoxifen as a single agent has been comparatively low. In the present study, we investigated whether treatment with methyl-ß-cyclodextrin (MCD), a cholesterol depleting agent, increases the efficacy of tamoxifen in melanoma cells. METHODS: This was a two-part study that incorporated in vitro effects of tamoxifen and MCD combination by analyzing cell survival, apoptosis and cell cycle analysis and in vivo antitumor efficacy on tumor isografts in C57BL/6J mice. RESULTS: MCD potentiated tamoxifen induced anticancer effects by causing cell cycle arrest and induction of apoptosis. Sensitization to tamoxifen was associated with down regulation of antiapoptotic protein Bcl-2, up-regulation of proapoptotic protein Bax, reduced caveolin-1 (Cav-1) and decreased pAkt/pERK levels. Co-administration of tamoxifen and MCD caused significant reduction in tumor volume and tumor weight in mice due to enhancement of drug uptake in the tumor. Supplementation with cholesterol abrogated combined effect of tamoxifen and MCD. CONCLUSION: Our results emphasize a potential synergistic effect of tamoxifen with MCD, and therefore, may provide a unique therapeutic window for improvement in melanoma treatment.


Assuntos
Antineoplásicos Hormonais/farmacologia , Colesterol/metabolismo , Melanoma/tratamento farmacológico , Tamoxifeno/farmacologia , beta-Ciclodextrinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Tamoxifeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Ciclodextrinas/administração & dosagem
12.
PLoS One ; 9(8): e105196, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25141174

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE), ß-secretase (BACE-1), and amyloid ß (Aß) aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Protriptilina/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antidepressivos/farmacologia , Linhagem Celular Tumoral , Cinética , Ligantes , Camundongos , Simulação de Dinâmica Molecular
13.
Food Chem ; 141(1): 187-95, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23768346

RESUMO

Beneficial effects of dietary flaxseed oil or fish oil on streptozotocin-nicotinamide induced diabetic rats were investigated. Rats were divided into three diabetic and three non-diabetic groups and received control, flaxseed oil or fish oil diets (10%w/w). Both diets reduced blood glucose, TBARS and hepatic NO. The extent of glycation measured in terms of glycated albumin and hemoglobin was reduced significantly with both diets. Flaxseed oil diet up-regulated hepatic catalase (CAT) (activity and expression), superoxide dismutase (SOD) (activity and expression) and glutathione peroxidase (GPx) expression. Fish oil diet up-regulated hepatic CAT (activity and expression), paraoxonase-1 (PON-1) expression and down-regulated heme oxygenase-1 (HO-1) expression. Furthermore, both diets down-regulated the expression of hepatic inflammatory genes TNF-α, IL-6, MCP-1, INF-γ and NF-κB. These results were supported by histopathological observations which showed better tissue preservation in both the diets. Thus, both the diets proved to be beneficial in preventing tissue injury and alleviating diabetic insults in the livers of STZ-NIC diabetic rats.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Óleos de Peixe/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Fígado/enzimologia , Animais , Antioxidantes/metabolismo , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Catalase/genética , Catalase/metabolismo , Citocinas/genética , Citocinas/imunologia , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucose/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glicosilação/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hemoglobinas/metabolismo , Humanos , Fígado/metabolismo , Masculino , Niacinamida/efeitos adversos , Ratos , Ratos Wistar , Albumina Sérica/metabolismo , Estreptozocina/efeitos adversos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
OMICS ; 17(1): 27-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23301641

RESUMO

Breast cancer, especially ER positive/HER2/neu negative IDC, is the predominant subtype of invasive ductal carcinoma. Although proteomic approaches have been used towards biomarker discovery in clinical breast cancer, ER positive/HER2/neu negative IDC is the least studied subtype. To discover biomarkers, as well as to understand the molecular events associated with disease progression of estrogen receptor positive/HER2/neu negative subtype of invasive ductal carcinoma, differential protein expression profiling was performed by using LC-MS(E) (MS at elevated energy). A total of 118 proteins were identified, of which 26 were differentially expressed. These identified proteins were functionally classified and their interactions and coexpression were analyzed by using bioinformatic tools PANTHER (Protein Analysis THrough Evolutionary Relationships) and STRING (Search Tool for the Retrieval of Interacting Genes). These proteins were found to be upregulated and were involved in cytoskeletal organization, calcium binding, and stress response. Interactions of annexin A5, actin, S100 A10, glyceraldehyde 3 phosphate dehydrogenase, superoxide dismutase 1, apolipoprotein, fibrinogen, and heat shock proteins were prominent. Differential expression of these proteins was validated by two-dimensional gel electrophoresis and Western blot analysis. The cluster of these proteins may serve as a signature profile for estrogen receptor positive/ HER2/neu negative subtype.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Ductal/metabolismo , Proteômica , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Western Blotting , Neoplasias da Mama/patologia , Carcinoma Ductal/patologia , Feminino , Genes erbB-2 , Humanos , Dados de Sequência Molecular , Invasividade Neoplásica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Proteomics Clin Appl ; 7(1-2): 155-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23184864

RESUMO

Glycation, a nonenzymatic reaction between reducing sugars and proteins, is a proteome wide phenomenon, predominantly observed in diabetes due to hyperglycemia. Glycated proteome of plasma, kidney, lens, and brain are implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative diseases, cancer, and aging. This review discusses the strategies to characterize protein glycation, its functional implications in different diseases, and intervention strategies to protect the deleterious effects of protein glycation.


Assuntos
Glicosilação , Proteoma/metabolismo , Proteômica , Animais , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Proteoma/química
16.
Biochem Biophys Res Commun ; 419(3): 490-4, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22366088

RESUMO

Cancer is associated with increased glycolysis and carbonyl stress. In view of this, AGE modified proteins were identified from clinical breast cancer tissue using 2DE-immunoblot and mass-spectrometry. These proteins were identified to be serotransferrin, fibrinogen gamma chain, glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, annexin II, prohibitin and peroxiredoxin 6, which have established role in cancer. Further, RAGE expression and its downstream signaling proteins NADPH oxidase and NF-kB were studied. Role of these AGE modified proteins and RAGE signaling in breast cancer is discussed.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Produtos Finais de Glicação Avançada/metabolismo , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas de Neoplasias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Feminino , Humanos , Dados de Sequência Molecular , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo
17.
Protein J ; 27(1): 7-12, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17763924

RESUMO

Intensity fading (IF) matrix assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS ) has become an alternative screening approach for the affinity-binding analysis of proteins and peptides with molecular ligands. In this investigation an attempt has been made to study the protein ligand interaction by intensity fading (IF) MALDI-MS using papain and cystatin as model system for protein-ligand interactions. The intensity fading of cystatin was monitored using various concentration of cystatin ranging from (1 to 8.6 microM) in presence of target protein, papain. The results indeed indicate that the intensity of cystatin decreases upon addition of papain. Furthermore, for the first time we have used IF-MALDI-MS for determining the number of binding sites for cystatin on papain by Scatchard analysis.


Assuntos
Cistatinas/química , Papaína/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sítios de Ligação
18.
Proteomics ; 5(4): 1167-77, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15759318

RESUMO

Gliomas are the most common of the primary intracranial tumors with astrocytomas constituting about 40%. Using clinically and histologically assessed astrocytomas, we have studied their protein profiles using a two-dimensional gel electrophoresis-mass spectrometry approach and identified differentially expressed proteins which may be useful molecular indicators to understand these tumors. Examination of the protein profiles of 27 astrocytoma samples of different grades revealed 72 distinct, differentially expressed proteins belonging to various functional groups such as cytoskeleton and intermediate filament proteins, heat shock proteins (HSPs), enzymes and regulatory proteins. Based on the consistency of their differential expression, 29 distinct proteins could be short-listed and may have a role in the pathology of astrocytomas. Some were found to be differentially expressed in both Grade III and IV astrocytomas while others were associated with a particular grade. A notable observation was underexpression of Prohibitin, a potential tumor suppressor protein, Rho-GDP dissociation inhibitor, Rho-GDI, a regulator of Rho GTPases and HSPs as well as destabilization of glial fibrillary acidic protein, GFAP, major protein of the glial filaments, in Grade III malignant tumors. We attempt to explain glioma malignancy and progression in terms of their combined role.


Assuntos
Astrocitoma/metabolismo , Eletroforese em Gel Bidimensional/métodos , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Proteômica/métodos , Western Blotting , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Humanos , Processamento de Imagem Assistida por Computador , Espectrometria de Massas , Chaperonas Moleculares , Neoplasias/metabolismo , Tripsina/farmacologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA