Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(50): e202313037, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818778

RESUMO

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.


Assuntos
Antineoplásicos , Selenocisteína , Selenocisteína/química , Peptídeos/química , Proteínas , Linhagem Celular
2.
Nat Commun ; 13(1): 6885, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371402

RESUMO

The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.


Assuntos
Peptídeos , Selenocisteína , Selenocisteína/química , Peptídeos/química , Proteínas , Aminoácidos
3.
Methods Mol Biol ; 2530: 125-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35761046

RESUMO

Peptides bearing C-terminal thioester and selenoester functionalities are essential precursors for the chemical synthesis of larger proteins using ligation chemistry, including native chemical ligation (NCL) and diselenide-selenoester ligation (DSL). The use of a side-chain anchoring thioesterification or selenoesterification approach offers a robust method to access peptide thioesters or peptide selenoesters in excellent yields and in high purity. Importantly, this methodology overcomes solubility issues and epimerization of the C-terminal amino acid residue that can occur using solution-phase approaches. Detailed methods for the solid-phase synthesis of peptide thioesters and selenoesters using a side-chain anchoring approach are outlined in this article.


Assuntos
Peptídeos , Técnicas de Síntese em Fase Sólida , Peptídeos/química , Proteínas , Técnicas de Síntese em Fase Sólida/métodos , Compostos de Enxofre/química
4.
Angew Chem Int Ed Engl ; 61(20): e202200163, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35194928

RESUMO

Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.


Assuntos
Peptídeos , Proteínas
5.
Methods Enzymol ; 662: 363-399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101218

RESUMO

Peptides and proteins represent an important class of biomolecules responsible for a plethora of structural and functional roles in vivo. Following their translation on the ribosome, the majority of eukaryotic proteins are post-translationally modified, leading to a proteome that is much larger than the number of genes present in a given organism. In order to understand the functional role of a given protein modification, it is necessary to access peptides and proteins bearing homogeneous and site-specific modifications. Accordingly, there has been significant research effort centered on the development of peptide ligation methodologies for the chemical synthesis of modified proteins. In this chapter we outline the discovery and development of a contemporary methodology called the diselenide-selenoester ligation (DSL) that enables the rapid and efficient fusion of peptide fragments to generate synthetic proteins. The practical aspects of using DSL for the preparation of chemically modified peptides and proteins in the laboratory is described. In addition, recent advances in the application of the methodology are outlined, exemplified by the synthesis and biological evaluation of a number of complex protein targets.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química
6.
Angew Chem Weinheim Bergstr Ger ; 134(20): e202200163, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38505698

RESUMO

Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.

7.
J Am Chem Soc ; 142(2): 1090-1100, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31840988

RESUMO

Peptide ligation chemistry has revolutionized protein science by providing access to homogeneously modified peptides and proteins. However, lipidated polypeptides and integral membrane proteins-an important class of biomolecules-remain enormously challenging to access synthetically owing to poor aqueous solubility of one or more of the fragments under typical ligation conditions. Herein we describe the advent of a reductive diselenide-selenoester ligation (rDSL) method that enables efficient ligation of peptide fragments down to low nanomolar concentrations, without resorting to solubility tags or hybridizing templates. The power of rDSL is highlighted in the efficient synthesis of the FDA-approved therapeutic lipopeptide tesamorelin and palmitylated variants of the transmembrane lipoprotein phospholemman (FXYD1). Lipidation of FXYD1 was shown to critically modulate inhibitory activity against the Na+/K+ pump.


Assuntos
Peptídeos/química , Compostos de Selênio/química , Ésteres/química , Luz , Oxirredução
8.
Nat Protoc ; 14(7): 2229-2257, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31227822

RESUMO

Chemoselective peptide ligation methods have provided synthetic access to numerous proteins, including those bearing native post-translational modifications and unnatural labels. This protocol outlines the chemical synthesis of proteins using a recently discovered reaction (diselenide-selenoester ligation (DSL)) in a rapid, additive-free manner. After ligation, the products can be chemoselectively deselenized to produce native peptide and protein products. We describe methods for the synthesis of suitably functionalized peptide diselenide and peptide selenoester fragments via Fmoc-solid-phase peptide synthesis (SPPS) protocols, fusion of these fragments by DSL, and the chemoselective deselenization of the ligation products to generate native synthetic proteins. We demonstrate the method's utility through the total chemical synthesis of the post-translationally modified collagenous domain of the hormone adiponectin via DSL-deselenization at selenocystine (the oxidized form of selenocysteine) and the rapid preparation of two tick-derived thrombin-inhibiting proteins by DSL-deselenization at ß-selenoaspartate and γ-selenoglutamate. This method should find widespread use for the rapid synthesis of proteins, including cases in which other peptide ligation methods cannot be used (or cannot be used efficiently), e.g., at sterically hindered or deactivated acyl donors. The method's speed and efficiency may render it useful in the generation of synthetic protein libraries. Each protein discussed can be synthesized within 15 working days from resin loading and can be readily produced by practitioners with master's-level experience in organic chemistry. Each synthesis using these protocols was performed independently by two labs (one academic and one industrial), which attained comparable yields of the protein products.


Assuntos
Proteínas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Adiponectina/síntese química , Cistina/análogos & derivados , Cistina/química , Compostos Organosselênicos/química
9.
Chem Commun (Camb) ; 53(39): 5424-5427, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28462972

RESUMO

Peptide selenoesters have recently emerged as key building blocks for the ligation-based assembly of large polypeptides and proteins. Herein, we report an efficient solid-phase method for the high yielding and epimerisation-free synthesis of peptide selenoesters using a side-chain immobilisation strategy.

10.
Chemistry ; 23(4): 946-952, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27859731

RESUMO

The use of native chemical ligation at selenocysteine (Sec) residues with peptide thioesters and additive-free selenocystine ligation with peptides bearing phenyl selenoesters, in concert with one-pot oxidative deselenization chemistry, is described. These approaches provide a simple and rapid method for accessing native peptides with serine in place of Sec at the ligation junction. The efficiency of both variants of the one-pot ligation-oxidative deselenization chemistry is probed through the synthesis of a MUC5AC-derived glycopeptide.


Assuntos
Cistina/análogos & derivados , Compostos Organosselênicos/química , Selenocisteína/química , Cromatografia Líquida de Alta Pressão , Cistina/química , Glicopeptídeos/síntese química , Glicopeptídeos/química , Humanos , Espectrometria de Massas , Mucina-5AC/química , Oxirredução
11.
Nat Commun ; 7: 13103, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725675

RESUMO

NAD+ is a vital redox cofactor and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Supplementation with NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we show that nicotinamide riboside kinase 1 (NRK1) is necessary and rate-limiting for the use of exogenous NR and NMN for NAD+ synthesis. Using genetic gain- and loss-of-function models, we further demonstrate that the role of NRK1 in driving NAD+ synthesis from other NAD+ precursors, such as nicotinamide or nicotinic acid, is dispensable. Using stable isotope-labelled compounds, we confirm NMN is metabolized extracellularly to NR that is then taken up by the cell and converted into NAD+. Our results indicate that mammalian cells require conversion of extracellular NMN to NR for cellular uptake and NAD+ synthesis, explaining the overlapping metabolic effects observed with the two compounds.


Assuntos
Mamíferos/metabolismo , Niacinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Injeções Intraperitoneais , Camundongos Knockout , NAD/biossíntese , Niacinamida/metabolismo , Compostos de Piridínio
12.
Surg Obes Relat Dis ; 11(3): 592-601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25862179

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery rapidly increases whole body insulin sensitivity, with changes in several organs including skeletal muscle. Objectives were to determine whether improvements in insulin action in skeletal muscle may occur directly at the level of the myocyte or secondarily from changes in systemic factors associated with weight loss. Myotubes were derived before and after RYGB surgery. The setting was Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden. METHODS: Eight patients (body mass index (BMI) 41.8 kg/m(2); age 41 yr) underwent RYGB surgery. Before and 6 months after RYGB surgery, skeletal muscle biopsies were collected from vastus lateralis muscle. Satellite cells derived from skeletal muscle biopsies were propagated in vitro as myoblasts and differentiated into myotubes. RESULTS: Expression of myogenic markers is increased in myoblasts derived from biopsies taken 6 months after bypass surgery, compared with their respective presurgery condition. Furthermore, glycogen synthesis, tyrosine phosphorylation of insulin receptor (IRS)-1-Tyr612 and Interleukin (IL)-8 secretion were increased, while fatty acid oxidation and circulating IL8 levels remain unaltered. Myotubes derived from muscle biopsies obtained after RYGB surgery displayed increased insulin-stimulated phosphorylation of protein kinase B (PKB)-Thr308 and proline-rich Akt substrate of 40 kDa (PRAS40)-Thr246. CONCLUSIONS: RYGB surgery is accompanied by enhanced glucose metabolism and insulin signaling, altered IL8 secretion and changes in mRNA levels and myogenic markers in cultured skeletal muscle cells. Thus, RYGB surgery involves intrinsic reprogramming of skeletal muscle to increase peripheral insulin sensitivity and glucose metabolism.


Assuntos
Derivação Gástrica/métodos , Glucose/metabolismo , Resistência à Insulina/fisiologia , Laparoscopia , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Obesidade Mórbida/cirurgia , Adulto , Biópsia , Células Cultivadas , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia
13.
Biochim Biophys Acta ; 1852(6): 1114-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25315298

RESUMO

Resveratrol has emerged in recent years as a compound conferring strong protection against metabolic, cardiovascular and other age-related complications, including neurodegeneration and cancer. This has generated the notion that resveratrol treatment acts as a calorie-restriction mimetic, based on the many overlapping health benefits observed upon both interventions in diverse organisms, including yeast, worms, flies and rodents. Though studied for over a decade, the molecular mechanisms governing the therapeutic properties of resveratrol still remain elusive. Elucidating how resveratrol exerts its effects would provide not only new insights in its fundamental biological actions but also new avenues for the design and development of more potent drugs to efficiently manage metabolic disorders. In this review we will cover the most recent advances in the field, with special focus on the metabolic actions of resveratrol and the potential role of SIRT1 and AMPK. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/efeitos dos fármacos , Sirtuínas/metabolismo , Estilbenos/farmacologia , Animais , Humanos , NF-kappa B/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
14.
Diabetes ; 64(2): 360-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25338814

RESUMO

Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the metabolism of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl-5'-monophosphate (ZMP) and its precursor AICAR, which is a pharmacological AMPK activator. We explored whether MTX promotes AMPK activation in cultured myotubes and isolated skeletal muscle. We found MTX markedly reduced the threshold for AICAR-induced AMPK activation and potentiated glucose uptake and lipid oxidation. Gene silencing of the MTX target ATIC activated AMPK and stimulated lipid oxidation in cultured myotubes. Furthermore, MTX activated AMPK in wild-type HEK-293 cells. These effects were abolished in skeletal muscle lacking the muscle-specific, ZMP-sensitive AMPK-γ3 subunit and in HEK-293 cells expressing a ZMP-insensitive mutant AMPK-γ2 subunit. Collectively, our findings underscore a role for AMPK as a direct molecular link between MTX and energy metabolism in skeletal muscle. Cotherapy with AICAR and MTX could represent a novel strategy to treat metabolic disorders and overcome current limitations of AICAR monotherapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Peroxidação de Lipídeos , Metotrexato/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Linhagem Celular , Ativação Enzimática/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Subunidades Proteicas
15.
Metabolism ; 61(2): 175-85, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21816445

RESUMO

The delicate homeostatic balance between glucose and fatty acid metabolism in relation to whole-body energy regulation is influenced by mitochondrial function. We determined expression and regulation of mitochondrial enzymes including pyruvate dehydrogenase kinase (PDK) 4, PDK2, carnitine palmitoyltransferase 1b, and malonyl-coenzyme A decarboxylase in skeletal muscle from people with normal glucose tolerance (NGT) or type 2 diabetes mellitus (T2DM). Vastus lateralis biopsies were obtained from NGT (n = 79) or T2DM (n = 33) men and women matched for age and body mass index. A subset of participants participated in a 4-month lifestyle intervention program consisting of an unsupervised walking exercise. Muscle biopsies were analyzed for expression and DNA methylation status. Primary myotubes were derived from biopsies obtained from NGT individuals for metabolic studies. Cultured skeletal muscle was exposed to agents mimicking exercise activation for messenger RNA (mRNA) expression analysis. The mRNA expression of PDK4, PDK2, and malonyl-coenzyme A decarboxylase was increased in skeletal muscle from T2DM patients. Methylation of the PDK4 promoter was reduced in T2DM and inversely correlated with PDK4 expression. Moreover, PDK4 expression was positively correlated with body mass index, blood glucose, insulin, C peptide, and hemoglobin A(1c). A lifestyle intervention program resulted in increased PDK4 mRNA expression in NGT individuals, but not in those with T2DM. Exposure to caffeine or palmitate increased PDK4 mRNA in a cultured skeletal muscle system. Our findings reveal that skeletal muscle expression of PDK4 and related genes regulating mitochondrial function reflects alterations in substrate utilization and clinical features associated with T2DM. Furthermore, hypomethylation of the PDK4 promoter in T2DM coincided with an impaired response of PDK4 mRNA after exercise.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Doenças Metabólicas/genética , Proteínas Mitocondriais/fisiologia , Idoso , Biópsia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício , Feminino , Humanos , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Pessoa de Meia-Idade , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Comportamento de Redução do Risco , Caminhada/fisiologia
16.
ACS Chem Biol ; 6(7): 724-32, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21506574

RESUMO

Kinetic target-guided synthesis (TGS) and in situ click chemistry are among unconventional discovery strategies having the potential to streamline the development of protein-protein interaction modulators (PPIMs). In kinetic TGS and in situ click chemistry, the target is directly involved in the assembly of its own potent, bidentate ligand from a pool of reactive fragments. Herein, we report the use and validation of kinetic TGS based on the sulfo-click reaction between thio acids and sulfonyl azides as a screening and synthesis platform for the identification of high-quality PPIMs. Starting from a randomly designed library consisting of 9 thio acids and 9 sulfonyl azides leading to 81 potential acylsulfonamides, the target protein, Bcl-X(L), selectively assembled four PPIMs, acylsulfonamides SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5, which have been shown to modulate Bcl-X(L)/BH3 interactions. To further investigate the Bcl-X(L) templation effect, control experiments were carried out using two mutants of Bcl-X(L). In one mutant, phenylalanine Phe131 and aspartic acid Asp133, which are critical for the BH3 domain binding, were substituted by alanines, while arginine Arg139, a residue identified to play a crucial role in the binding of ABT-737, a BH3 mimetic, was replaced by an alanine in the other mutant. Incubation of these mutants with the reactive fragments and subsequent LC/MS-SIM analysis confirmed that these building block combinations yield the corresponding acylsulfonamides at the BH3 binding site, the actual "hot spot" of Bcl-X(L). These results validate kinetic TGS using the sulfo-click reaction as a valuable tool for the straightforward identification of high-quality PPIMs.


Assuntos
Química Click/métodos , Domínios e Motivos de Interação entre Proteínas , Alanina , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Arginina , Ácido Aspártico , Proteína 11 Semelhante a Bcl-2 , Sítios de Ligação , Bioquímica/métodos , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptidomiméticos , Fenilalanina , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas , Sulfonamidas/química , Sulfonamidas/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA