Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Ophthalmol ; 23(1): 479, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993825

RESUMO

BACKGROUND: Conjunctival chemosis (CC) is an extremely rare symptom of pituitary neuroendocrine tumor (PitNET). We report an extremely rare case of PitNET manifesting as severe CC. CASE PRESENTATION: A 48-year-old male was admitted to our hospital with severe CC, proptosis, and ptosis of the right eye. Magnetic resonance imaging demonstrated the tumor mass invading the cavernous sinus (CS) with cystic lesion. The patient underwent emergent endoscopic transsphenoidal surgery, and the pathological diagnosis was PitNET. CC of the right eye remarkably improved after the surgery. Glucocorticoid therapy was performed for right oculomotor nerve palsy, which rapidly improved. The postoperative course was uneventful and the patient was discharged from our hospital without hormone replacement. CONCLUSIONS: CC caused by CS invasion of PitNET can be cured by early surgical treatment. Therefore, PitNET is important to consider in the differential diagnosis of CC.


Assuntos
Seio Cavernoso , Exoftalmia , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Masculino , Humanos , Pessoa de Meia-Idade , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/cirurgia , Seio Cavernoso/patologia , Seio Cavernoso/cirurgia , Túnica Conjuntiva/patologia , Exoftalmia/patologia
2.
Exp Ther Med ; 26(2): 378, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37456165

RESUMO

Release of large amounts of adenosine triphosphate (ATP), a gliotransmitter, into the extracellular space by traumatic brain injury (TBI) is considered to activate the microglia followed by release of inflammatory cytokines resulting in excessive inflammatory response that induces secondary brain injury. The present study investigated whether antagonists of ATP receptors (P2X4 and/or P2X7) on microglia are beneficial for reducing the post-injury inflammatory response that leads to secondary injury, a prognostic aggravation factor of TBI. Adult male Sprague-Dawley rats were subjected to cortical contusion injury (CCI) and randomly assigned to injury and drug treatment conditions, as follows: i) No surgical intervention (naïve group); ii) dimethyl sulfoxide treatment after CCI (CCI-control group); iii) 5-BDBD (antagonist of P2X4 receptor) treatment after CCI (CCI-5-BDBD group); iv) CCI-AZ11645373 (antagonist of P2X7 receptor) treatment after CCI (CCI-AZ11645373 group); v) or 5-BDBD and AZ11645373 treatment after CCI (CCI-5-BDBD + AZ11645373 group). In the CCI-5-BDBD, CCI-AZ11645373, and CCI-5-BDBD + AZ11645373 groups, expression of activated microglia was suppressed in the ipsilateral cortex and hippocampus 3 days after the CCI. Western blotting with ionized calcium-binding adaptor molecule 1 antibody revealed that administration of CCI-5-BDBD and/or CCI-AZ11645373 suppressed expression of microglia and reduced expression of inflammatory cytokine mRNA 3 days after the CCI. Furthermore, the plus maze test, which reflects the spatial memory function and involves the hippocampal function, showed improvement 28 days after secondary injury to the hippocampus. These findings confirmed that blocking the P2X4 and P2X7 receptors, which are ATP receptors central in gliotransmission, suppresses microglial activation and subsequent cytokine expression after brain injury, and demonstrates the potential as an effective treatment for reducing secondary brain injury.

3.
Brain Res Bull ; 181: 46-54, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077842

RESUMO

The aim of the current study was to determine the effects of cerebral contusion injury with purinergic adenosine triphosphate Y1 (P2Y1) receptor blockers on postinjury inflammatory responses. Adenosine triphosphate (ATP) is released into the extracellular space in several in vivo models, including traumatic brain injury. Released ATP triggers neuroinflammation via activation of microglial cells. P2Y1 receptor blockers were reported to suppress extracellular ATP elevation in several disease models through inhibition of cellular ATP release. In addition to the beneficial effects of inflammation, excess inflammatory reactions cause secondary damage and aggravate outcomes. Here, we assessed the effect of the selective P2Y1 receptor blocker MRS2179 on its potential to prevent posttraumatic inflammation in a rat cerebral contusion model. Cerebral contusion injury was induced in the rat cerebral cortex. Either MRS2179 or artificial cerebral spinal fluid as a control was administered in situ into the center of contused tissue via a subcutaneously implanted osmotic pump. Galectin 3, a marker of microglia and proinflammatory cytokines, was measured 1, 3 and 7 days following injury. Another group of rats was assessed for behavioral performance up to 28 days after injury, including the beam walk test, neurological response test and plus maze test. The Galectin 3 levels in the cortex around the contusion cavity and in the cortex far from the contusion cavity were significantly suppressed by MRS2179 administration on postinjury Days 1 and 3 (p < 0.05). However, administration of MRS2179 failed to improve behavioral outcome. Administration of MRS2179 successfully suppressed microglial activation in a traumatic brain injury model, which will be a potent treatment option in the future. Further study is required to conclude its therapeutic effects.


Assuntos
Difosfato de Adenosina/análogos & derivados , Anti-Inflamatórios/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/lesões , Galectina 3/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/imunologia , Córtex Cerebral/imunologia , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA