Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 264: 115969, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039787

RESUMO

The persistence of drug resistance poses a significant obstacle to the advancement of efficacious malaria treatments. The remarkable efficacy displayed by 1,2,3-triazole-based compounds against Plasmodium falciparum highlights the potential of triazole conjugates, with diverse pharmacologically active structures, as potential antimalarial agents. We aimed to synthesize 7-dichloroquinoline-triazole conjugates and their structure-activity relationship (SAR) derivatives to investigate their anti-plasmodial activity. Among them, QP11, featuring a m-NO2 substitution, demonstrated efficacy against both chloroquine-sensitive and -resistant parasite strains. QP11 selectively inhibited FP2, a cysteine protease involved in hemoglobin degradation, and showed synergistic effects when combined with chloroquine. Additionally, QP11 hindered hemoglobin degradation and hemozoin formation within the parasite. Metabolic stability studies indicated high stability of QP11, making it a promising antimalarial candidate. In vivo evaluation using a murine malaria model demonstrated QP11's efficacy in eradicating parasite growth without neurotoxicity, presenting it as a promising compound for novel antimalarial development.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/química , Piperazina/farmacologia , Triazóis/química , Cloroquina/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico
2.
Int J Biol Macromol ; 138: 309-320, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301397

RESUMO

Metacaspases are clan CD cysteine peptidases found in plants, fungi and protozoa that possess a conserved Peptidase_C14 domain, homologous to the human caspases and a catalytic His/Cys dyad. Earlier reports have indicated the role of metacaspases in cell death; however, metacaspases of human malaria parasite remains poorly understood. In this study, we aimed to functionally characterize a novel malarial protease, P. falciparum metacaspase-3 (PfMCA3). Unlike other clan CD peptidases, PfMCA3 has an atypical active site serine (Ser1865) residue in place of canonical cysteine and it phylogenetically forms a distinct branch across the species. To investigate whether this domain retains catalytic activity, we expressed, purified and refolded the Peptidase_C14 domain of PfMCA3 which was found to express in all asexual stages. PfMCA3 exhibited trypsin-like serine protease activity with ser1865 acting as catalytic residue to cleave trypsin oligopeptide substrate. PfMCA3 is inhibited by trypsin-like serine protease inhibitors. Our study found that PfMCA3 enzymatic activity was abrogated when catalytic serine1865 (S1865A) was mutated. Moreover, PfMCA3 was found to be inactive against caspase substrate. Overall, our study characterizes a novel metacaspase of P. falciparum, different from human caspases and not responsible for the caspase-like activity, therefore, could be considered as a potential chemotherapeutic target.


Assuntos
Caspases/metabolismo , Plasmodium falciparum/enzimologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Biocatálise , Inibidores de Caspase/farmacologia , Caspases/química , Caspases/genética , Domínio Catalítico , Concentração de Íons de Hidrogênio , Cinética , Plasmodium falciparum/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA