Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Virchows Arch ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388965

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While induction chemotherapy leads to remission in most patients, a significant number will experience relapse. Therefore, there is a need for novel therapies that can improve remission rates in patients with relapsed and refractory AML. CD70 is the natural ligand for CD27 (a member of the TNF superfamily) and appears to be a promising therapeutic target. Consequently, there is considerable interest in developing chimeric antigen receptor (CAR) T-cell therapy products that can specifically target CD70 in various neoplasms, including AML. In this study, we employed routine diagnostic techniques, such as immunohistochemistry and flow cytometry, to investigate the expression of CD70 in bone marrow samples from treatment-naïve and relapsed AML patients after hypomethylating agents (HMA). Also, we evaluated the impact of HMA on CD70 expression and examined CD70 expression in various leukemic cell subsets and normal hematopoietic progenitors.

2.
Leukemia ; 38(1): 82-95, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007585

RESUMO

We identified activin A receptor type I (ACVR1), a member of the TGF-ß superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.


Assuntos
Leucemia Mieloide Aguda , Humanos , Simulação de Acoplamento Molecular , Mutação , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Apoptose , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/uso terapêutico
3.
Front Immunol ; 13: 1018047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203567

RESUMO

The current global platelet supply is often insufficient to meet all the transfusion needs of patients, in particular for those with alloimmune thrombocytopenia. To address this issue, we have developed a strategy employing a combination of approaches to achieve more efficient production of functional megakaryocytes (MKs) and platelets collected from cord blood (CB)-derived CD34+ hematopoietic cells. This strategy is based on ex-vivo expansion and differentiation of MKs in the presence of bone marrow niche-mimicking mesenchymal stem cells (MSCs), together with two other key components: (1) To enhance MK polyploidization, we used the potent pharmacological Rho-associated coiled-coil kinase (ROCK) inhibitor, KD045, resulting in liberation of increased numbers of functional platelets both in-vitro and in-vivo; (2) To evade HLA class I T-cell-driven killing of these expanded MKs, we employed CRISPR-Cas9-mediated ß-2 microglobulin (ß2M) gene knockout (KO). We found that coculturing with MSCs and MK-lineage-specific cytokines significantly increased MK expansion. This was further increased by ROCK inhibition, which induced MK polyploidization and platelet production. Additionally, ex-vivo treatment of MKs with KD045 resulted in significantly higher levels of engraftment and donor chimerism in a mouse model of thrombocytopenia. Finally, ß2M KO allowed MKs to evade killing by allogeneic T-cells. Overall, our approaches offer a novel, readily translatable roadmap for producing adult donor-independent platelet products for a variety of clinical indications.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Trombocitopenia , Animais , Citocinas/farmacologia , Sangue Fetal , Megacariócitos , Camundongos , Linfócitos T , Quinases Associadas a rho
4.
Front Immunol ; 12: 631353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017325

RESUMO

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/fisiologia , Sangue Fetal/citologia , Doença Enxerto-Hospedeiro/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Animais , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/imunologia , Citocinas/farmacologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos NOD , Controle de Qualidade
6.
Carbohydr Res ; 499: 108222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33401229

RESUMO

In this study, novel redox-sensitive nanoparticles based on xylan-lipoic acid (Xyl-LA) conjugate were developed for tumor targeted delivery of niclosamide (Nic) in cancer therapy. The niclosamide loaded xylan-lipoic acid conjugate nanoparticles (Xyl-LA/Nic NPs) showed redox responsive behaviour in presence of reductive glutathione (GSH), which indicate their suitability for intracellular drug release. The obtained Xyl-LA/Nic NPs exhibited uniform particle size (196 ± 1.64 nm), high loading capacity (~28.6 wt %) and excellent blood compatibility. The anticancer activity of the Niclosamide and the Xyl-LA/Nic NPs against the colon carcinoma cell lines (HCT-15, Colo-320) were evaluated by MTT assay and the overall results indicate that the Xyl-LA/Nic NPs significantly enhanced the therapeutic efficiency of niclosamide in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Niclosamida/farmacologia , Ácido Tióctico/química , Xilanos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Niclosamida/química , Oxirredução , Tamanho da Partícula
7.
Int J Radiat Oncol Biol Phys ; 109(1): 60-72, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841681

RESUMO

PURPOSE: Although vascular alterations in solid tumor malignancies are known to decrease therapeutic delivery, the effects of leukemia-induced bone marrow vasculature (BMV) alterations on therapeutic delivery are not well known. Additionally, functional quantitative measurements of the leukemic BMV during chemotherapy and radiation therapy are limited, largely due to a lack of high-resolution imaging techniques available preclinically. This study develops a murine model using compartmental modeling for quantitative multiphoton microscopy (QMPM) to characterize the malignant BMV before and during treatment. METHODS AND MATERIALS: Using QMPM, live time-lapsed images of dextran leakage from the local BMV to the surrounding bone marrow of mice bearing acute lymphoblastic leukemia (ALL) were taken and fit to a 2-compartment model to measure the transfer rate (Ktrans), fractional extracellular extravascular space (νec), and vascular permeability parameters, as well as functional single-vessel characteristics. In response to leukemia-induced BMV alterations, the effects of 2 to 4 Gy low-dose radiation therapy (LDRT) on the BMV, drug delivery, and mouse survival were assessed post-treatment to determine whether neoadjuvant LDRT before chemotherapy improves treatment outcome. RESULTS: Mice bearing ALL had significantly altered Ktrans, increased νec, and increased permeability compared with healthy mice. Angiogenesis, decreased single-vessel perfusion, and decreased vessel diameter were observed. BMV alterations resulted in disease-dependent reductions in cellular uptake of Hoechst dye. LDRT to mice bearing ALL dilated BMV, increased single-vessel perfusion, and increased daunorubicin uptake by ALL cells. Consequently, LDRT administered to mice before receiving nilotinib significantly increased survival compared with mice receiving LDRT after nilotinib, demonstrating the importance of LDRT conditioning before therapeutic administration. CONCLUSION: The developed QMPM enables single-platform assessments of the pharmacokinetics of fluorescent agents and characterization of the BMV. Initial results suggest BMV alterations after neoadjuvant LDRT may contribute to enhanced drug delivery and increased treatment efficacy for ALL. The developed QMPM enables observations of the BMV for use in ALL treatment optimization.


Assuntos
Medula Óssea/irrigação sanguínea , Terapia Neoadjuvante , Neovascularização Patológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Doses de Radiação , Animais , Linhagem Celular Tumoral , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Dosagem Radioterapêutica , Microambiente Tumoral/efeitos da radiação
9.
Mater Sci Eng C Mater Biol Appl ; 107: 110356, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761247

RESUMO

Chemotherapeutic agents with different anticancer mechanisms could enhance therapeutic effect in cancer therapy by their combined application. In this study, redox-sensitive prodrug nanoparticles based on Xyl-SS-Cur conjugate were developed for co-delivery of curcumin and 5-FU in cancer therapy. The Xyl-SS-Cur conjugate was synthesized via covalent conjugation of curcumin to xylan through a disulphide (-S-S-) linkage. The Xyl-SS-Cur conjugate could self-assemble in aqueous medium into nanoparticles and the lipophilic 5-fluorouracil-stearic acid (5-FUSA) prodrug was encapsulated into the hydrophobic core of Xyl-SS-Cur NPs through dialysis membrane method. The obtained Xyl-SS-Cur/5-FUSA NPs had an appropriate size (∼217 ±â€¯2.52 nm), high drug loading of curcumin (∼ 31.4 wt%) and 5-FUSA (∼ 11.8 wt%) and high stability. The interaction of Xyl-SS-Cur/5-FUSA NPs with blood components was investigated by hemolysis study. The cytotoxicity study demonstrated that Xyl-SS-Cur/5-FUSA NPs induced higher cytotoxicity than free drugs against the Human colorectal cancer cells (HT-29, HCT-15). These results indicate that Xyl-SS-Cur/5-FUSA NPs can serve as a promising drug delivery system in cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Curcumina/química , Curcumina/farmacologia , Dissulfetos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Células HT29 , Hemólise/efeitos dos fármacos , Humanos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Oxirredução , Tamanho da Partícula , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Esteáricos/química , Xilanos/química
10.
Clin Cancer Res ; 25(24): 7463-7474, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548348

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is a highly aggressive form of leukemia, which results in poor survival outcomes. Currently, diagnosis and prognosis are based on invasive single-point bone marrow biopsies (iliac crest). There is currently no AML-specific noninvasive imaging method to detect disease, including in extramedullary organs, representing an unmet clinical need. About 85% to 90% of human myeloid leukemia cells express CD33 cell surface receptors, highlighting CD33 as an ideal candidate for AML immunoPET. EXPERIMENTAL DESIGN: We evaluated whether [64Cu]Cu-DOTA-anti-CD33 murine mAb can be used for immunoPET imaging of AML in a preclinical model. MicroCT was adjusted to detect spatial/anatomical details of PET activity. For translational purposes, a humanized anti-CD33 antibody was produced; we confirmed its ability to detect disease and its distribution. We reconfirmed/validated CD33 antibody-specific targeting with an antibody-drug conjugate (ADC) and radioimmunotherapy (RIT). RESULTS: [64Cu]Cu-DOTA-anti-CD33-based PET-CT imaging detected CD33+ AML in mice with high sensitivity (95.65%) and specificity (100%). The CD33+ PET activity was significantly higher in specific skeletal niches [femur (P < 0.00001), tibia (P = 0.0001), humerus (P = 0.0014), and lumber spine (P < 0.00001)] in AML-bearing mice (over nonleukemic control mice). Interestingly, the hybrid PET-CT imaging showed high disease activity in the epiphysis/metaphysis of the femur, indicating regional spatial heterogeneity. Anti-CD33 therapy using newly developed humanized anti-CD33 mAb as an ADC (P = 0.02) and [225Ac]Ac-anti-CD33-RIT (P < 0.00001) significantly reduced disease burden over that of respective controls. CONCLUSIONS: We have successfully developed a novel anti-CD33 immunoPET-CT-based noninvasive modality for AML and its spatial distribution, indicating a preferential skeletal niche.


Assuntos
Radioisótopos de Cobre/química , Compostos Heterocíclicos com 1 Anel/química , Imunoconjugados/farmacocinética , Leucemia Mieloide Aguda/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Physiol ; 234(9): 16295-16303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30770553

RESUMO

Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.

13.
J Cell Physiol ; 234(8): 14040-14049, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30623427

RESUMO

Induction of reactive oxygen species (ROS), an important process for the cytotoxicity of various acute myeloid leukemia (AML) therapies including hypomethylating agents (HMAs), concurrently activates the NF-E2-related factor 2 (Nrf2) antioxidant response pathway which in turn results in induction of antioxidant enzymes that neutralize ROS. In this study, we demonstrated that Nrf2 inhibition is an additional mechanism responsible for the marked antileukemic activity in AML seen with the combination of HMAs and venetoclax (ABT-199). HMA and venetoclax combined treatment augmented mitochondrial ROS induction and apoptosis compared with treatment HMA alone. Treatment of AML cell lines as well as primary AML cells with venetoclax disrupted HMA decitabine-increased nuclear translocation of Nrf2 and induction of downstream antioxidant enzymes including heme oxygenase-1 and NADP-quinone oxidoreductase-1. Venetoclax treatment also leads to dissociation of B-cell lymphoma 2 from the Nrf2/Keap-1 complex and targets Nrf2 to ubiquitination and proteasomal degradation. Thus, our results here demonstrated an undiscovered mechanism underlying synergistic effect of decitabine and venetoclax in AML cells, elucidating for impressive results in antileukemic activity against AML in preclinical and early clinical studies by combined treatment of these drugs.


Assuntos
Decitabina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Elementos de Resposta Antioxidante/genética , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , NAD(P)H Desidrogenase (Quinona)/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/farmacologia , Ubiquitinação
14.
Int J Biol Macromol ; 128: 204-213, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684574

RESUMO

In this study, self-assembled nanoparticles based on amphiphilic xylan-stearic acid (Xyl-SA) conjugates have been developed for the efficient delivery of 5-fluorouracil (5-FU) in cancer therapy. The self-assembled behavior of Xyl-SA conjugates in aqueous medium was investigated using pyrene as fluorescent probe. To enhance the loading efficacy of 5-FU, the lipophilic 5-fluorouracil-stearic acid (5-FUSA) prodrug was synthesized and subsequently encapsulated into the hydrophobic core of Xyl-SA NPs. The obtained Xyl-SA/5-FUSA NPs had an appropriate size (~278 nm), high drug loading of 5-FUSA (~14.6 wt%) and high physiological stability. The interaction of the Xyl-SA/5-FUSA NPs with blood components was investigated by hemolysis study. The cell cytotoxic studies demonstrated that Xyl-SA/5-FUSA NPs induced higher cytotoxicity than free drugs against the Human colorectal cancer cells (HT-29, HCT-15). These results indicate that Xyl-SA/5-FUSA NPs can serve as a promising drug delivery system for the efficient delivery of 5-FU in cancer therapy.


Assuntos
Fluoruracila/administração & dosagem , Fluoruracila/química , Nanopartículas/química , Pró-Fármacos/química , Ácidos Esteáricos/química , Xilanos/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hemólise/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Tamanho da Partícula , Pró-Fármacos/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Methods Mol Biol ; 1842: 55-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196401

RESUMO

Hematopoietic stem cells (HSCs) are multipotent cells capable of differentiating into all types of blood cells. The important feature of the HSCs is their ability to repopulate the complete blood cells after BM ablation. For clinical application, cord blood derived HSCs and G-CSF mobilized peripheral blood HSCs are good alternative to bone marrow HSCs. For immunological and hematological studies the obvious choice of model organism is Mouse. Therefore, understanding HSCs in murine model is important. In this chapter, we describe the common/currently used methods to isolate and identify human and mouse HSCs.


Assuntos
Separação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fenótipo , Animais , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Separação Celular/métodos , Humanos , Separação Imunomagnética , Imunofenotipagem , Camundongos
17.
Nat Med ; 24(4): 450-462, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505034

RESUMO

Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR-ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR-ABL, which led to inhibition of the RAN-exportin-5-RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR-ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML.


Assuntos
Medula Óssea/patologia , Autorrenovação Celular , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Animais , Regulação para Baixo/genética , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia
18.
Leuk Res ; 59: 124-135, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28646646

RESUMO

The artimisinins are a class of antimalarial compounds whose antiparasitic activity is mediated by induction of reactive oxygen species (ROS). Herein, we report that among the artimisinins, artesunate (ARTS), an orally bioavailable compound has the most potent antileukemic activity in AML models and primary patients' blasts. ARTS was most cytotoxic to the FLT3-ITD+ AML MV4-11 and MOLM-13 cells (IC50 values of 1.1 and 0.82µM respectively), inhibited colony formation in primary AML and MDS cells and augmented cytotoxicity of chemotherapeutics. ARTS lowered cellular BCL-2 level via ROS induction and increased the cytotoxicity of the BCL-2 inhibitor venetoclax (ABT-199). ARTS treatment led to cellular and mitochondrial ROS accumulation, double stranded DNA damage, loss of mitochondrial membrane potential and induction of the intrinsic mitochondrial apoptotic cascade in AML cell lines. The antileukemic activity of ARTS was further confirmed in MV4-11 and FLT3-ITD+ primary AML cell xenografts as well as MLL-AF9 syngeneic murine AML model where ARTS treatment resulted in significant survival prolongation of treated mice compared to control. Our results demonstrate the potent preclinical antileukemic activity of ARTS as well as its potential for a rapid transition to a clinical trial either alone or in combination with conventional chemotherapy or BCL-2 inhibitor, for treatment of AML.


Assuntos
Artemisininas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antimaláricos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/uso terapêutico , Artesunato , Linhagem Celular Tumoral , Sinergismo Farmacológico , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida
19.
Sci Rep ; 6: 38632, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929130

RESUMO

In this study, we identified a CD105+CD90.1-CD133-CD55- (CD133-CD55-) population in the fetal skeletal element that can generate bone and bone marrow. Besides osteoblasts and chondrocytes, the CD133-CD55- common progenitors can give rise to marrow reticular stromal cells and perivascular mesenchymal progenitors suggesting they function as the fetal common skeletal progenitor. Suppression of CXCL12 and Kitl expression in CD133-CD55- common progenitors severely disrupted the BM niche formation but not bone generation. Thus, CD133-CD55- common progenitors are the main source of CXCL12 and Kitl producing cells in the developing marrow.


Assuntos
Antígeno AC133/metabolismo , Antígenos CD55/metabolismo , Osteoblastos/metabolismo , Animais , Ataxina-1/metabolismo , Biomarcadores , Medula Óssea/metabolismo , Diferenciação Celular , Quimiocina CXCL12/metabolismo , Condrócitos/metabolismo , Ensaio de Unidades Formadoras de Colônias , Imunofenotipagem , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteogênese , Fenótipo , Nicho de Células-Tronco
20.
Nat Commun ; 7: 13095, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721421

RESUMO

Microenvironment cues received by haematopoietic stem cells (HSC) are important in regulating the choice between self-renewal and differentiation. On the basis of the differential expression of cell-surface markers, here we identify a mesenchymal stromal progenitor hierarchy, where CD45-Ter119-CD31-CD166-CD146-Sca1+(Sca1+) progenitors give rise to CD45-Ter119-CD31-CD166-CD146+(CD146+) intermediate and CD45-Ter119-CD31-CD166+CD146-(CD166+) mature osteo-progenitors. All three progenitors preserve HSC long-term multi-lineage reconstitution capability in vitro; however, their in vivo fates are different. Post-transplantation, CD146+ and CD166+ progenitors form bone only. While Sca1+ progenitors produce CD146+, CD166+ progenitors, osteocytes and CXCL12-producing stromal cells. Only Sca1+ progenitors are capable of homing back to the marrow post-intravenous infusion. Ablation of Sca1+ progenitors results in a decrease of all three progenitor populations as well as haematopoietic stem/progenitor cells. Moreover, suppressing production of KIT-ligand in Sca1+ progenitors inhibits their ability to support HSCs. Our results indicate that Sca1+ progenitors, through the generation of both osteogenic and stromal cells, provide a supportive environment for hematopoiesis.


Assuntos
Hematopoese , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco , Animais , Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Injeções Intravenosas , Camundongos Endogâmicos C57BL , Fenótipo , Fator de Células-Tronco/metabolismo , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA