Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(6): 238, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193831

RESUMO

Kinases can be grouped into 20 families which play a vital role as a regulator of neoplasia, metastasis, and cytokine suppression. Human genome sequencing has discovered more than 500 kinases. Mutations of the kinase itself or the pathway regulated by kinases leads to the progression of diseases such as Alzheimer's, viral infections, and cancers. Cancer chemotherapy has made significant leaps in recent years. The utilization of chemotherapeutic agents for treating cancers has become difficult due to their unpredictable nature and their toxicity toward the host cells. Therefore, targeted therapy as a therapeutic option against cancer-specific cells and toward the signaling pathways is a valuable avenue of research. SARS-CoV-2 is a member of the Betacoronavirus genus that is responsible for causing the COVID pandemic. Kinase family provides a valuable source of biological targets against cancers and for recent COVID infections. Kinases such as tyrosine kinases, Rho kinase, Bruton tyrosine kinase, ABL kinases, and NAK kinases play an important role in the modulation of signaling pathways involved in both cancers and viral infections such as COVID. These kinase inhibitors consist of multiple protein targets such as the viral replication machinery and specific molecules targeting signaling pathways for cancer. Thus, kinase inhibitors can be used for their anti-inflammatory, anti-fibrotic activity along with cytokine suppression in cases of COVID. The main goal of this review is to focus on the pharmacology of kinase inhibitors for cancer and COVID, as well as ideas for future development.


Assuntos
COVID-19 , Neoplasias , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , SARS-CoV-2 , Neoplasias/tratamento farmacológico , Citocinas
2.
Environ Res ; 220: 115252, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632883

RESUMO

Remediation of environmental oil pollution with the usage of fungal organisms has proven to be a successful cleanup bioremediation method for organic contaminants. To investigate the breakdown of oil pollutants in water environments, biosurfactant-producing fungi have been isolated from oil-polluted soil samples. 16s rRNA sequencing technique was performed to identify the fungal organism and phylogenetic tree has been constructed. A variety of biosurfactant screening tests have demonstrated the better biosurfactant producing ability of fungi. The emulsion's stability, which is essential for the biodegradation process, was indicated by the emulsification index of 68.48% and emulsification activity of 1.3. In the isolated biosurfactant, important functional groups such as amino groups, lipids, and sugars were found according to thin layer chromatography analysis with a maximum retention value of 0.85. A maximum oil degradation of around 64% was observed with immobilized beads within 12 days. The half-life, and degradation removal rate constant of 20.21 days and 0.03 day-1, respectively, have been determined by the degradation kinetic analysis. GCMS analysis confirmed the highly degraded hydrocarbons such as nonanoic acid and pyrrolidine. The immobilized fungi exhibit better oil biodegradability in aqueous solutions.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Biomassa , Cinética , Filogenia , RNA Ribossômico 16S , Hidrocarbonetos , Água , Fungos/genética , Petróleo/análise , Petróleo/metabolismo , Tensoativos/análise , Poluentes do Solo/análise
3.
Chemosphere ; 314: 137713, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596329

RESUMO

Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger.


Assuntos
Biofortificação , Saúde Global , Humanos , Biofortificação/métodos , Melhoramento Vegetal , Micronutrientes , Solo , Produtos Agrícolas
4.
Environ Res ; 215(Pt 3): 114317, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174758

RESUMO

In the current research work, the activated carbon synthesized from the plant species Delonix regia is doped with iron oxide nanoparticles and enforced as a nanosorbent for the effective extermination of Tartrazine (TAR) and Methylene blue (MB) dyes. This nanosorbent is prepared from the bark powder of the Delonix regia and subjected to chemical activation; Furthermore, the synthesized biosorbent were characterized using FTIR, SEM, TGA, and XRD to understand their functional properties and structural morphology. The optimum effectiveness adsorption of Tartrazine and Methylene blue has been investigated by using different key parameters. The conclusions have shown the highest removal percentage at a pH of 3 and 6 for Tartrazine and Methylene blue, respectively. For the various initial concentrations, the adsorption percentage reached equilibrium after 60 min and 90 min for TAR and MB. The adsorption equilibrium values were applied to various isotherms models. The adsorbent showed a higher removal capacity of 357.142 mg g-1 and 147.058 mg g-1 and for MB and TAR respectively. The kinetic data were best fits to pseudo second order model. The thermodynamic parameters indicated that this adsorption process was found to be spontaneous, exothermic and feasible at different temperatures. These results have shown that the prepared adsorbent is an environmentally friendly and suitable material for the elimination of TAR and MB from water systems.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Corantes/química , Concentração de Íons de Hidrogênio , Ferro , Cinética , Azul de Metileno/química , Pós , Tartrazina , Termodinâmica , Água , Poluentes Químicos da Água/análise
5.
Chemosphere ; 308(Pt 1): 136266, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057350

RESUMO

The carcinogenic Rhodamine-B dye is recalcitrant which could cause serious hazards to human beings. Degradation with the application of unique bacterial strain is a sustainable technique. The bioremediation technique showed great potential to degrade a variety of recalcitrant pollutants like dyes. In this study, Brevundimonas diminuta, was selected for the breakdown of toxic textile dye Rhodamine-B. This bacterium showed 90-95% of degradation at the optimum conditions like 10 mg L-1 of concentration of dye, pH 7 and temperature of 30 °C. Further UV-Visible spectrophotometry, FT-IR spectral scan, GC-MS analysis depicted the breakdown products like Methyl 18-fluoro-octadec-9-enoate, Methyl 18-fluoro-octadec-9-enoate and d-Homo-24-nor-17-oxachola-20,22-diene-3,16-dione,7-(acetyloxy)-1, 23 tri-epoxy-4,4,8-trimethyl. The degradation was confirmed by the changes in the functional groups, change in molecular weight and charge to-mass ratio. These results suggested that this strain is a deserving organism for the degradation of dye compounds.


Assuntos
Corantes , Poluentes Ambientais , Compostos Azo/metabolismo , Biodegradação Ambiental , Caulobacteraceae , Corantes/metabolismo , Humanos , Pseudomonas/metabolismo , Rodaminas , Espectroscopia de Infravermelho com Transformada de Fourier , Indústria Têxtil , Têxteis
6.
Chemosphere ; 307(Pt 4): 136041, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35981623

RESUMO

The final sinkers of polyaromatic hydrocarbons are water sources, where they undergo bioaccumulation and biomagnification, leading to adverse mutagenic, carcinogenic, and teratogenic effects on exposure in flora, fauna, and humans. Two indigenous strains, Pseudomonas sp. WDE11 and Pseudomonas sp. WD23, isolated from refinery effluent, degraded over 97.5% of benzo(a)fluorene (10 mg/L) in 7 days. On growth at concentration dependent amounts (50 mg/L and 100 mg/L), the degradation reduced to approximately 90% and 80% respectively in 56 days. Degradation kinetics was concentration dependent, as degradation followed first-order and second-order kinetics for 50 mg/L and 100 mg/L respectively. The half-life for degradation of benzo(a)fluorene ranged between 11.64 - 12.26 days and 13.11-14.5 days for strains WDE11 and WD23 respectively. The values of Andrew-Haldane kinetic parameters i.e. µmax, Ks, and Ki were 0.306 day-1, 11.11 mg/L, and 120.41 mg/L for strain WDE11 respectively, while for strain WD23, the respective values were 0.312 day-1, 9.97 mg/L, and 152 mg/L. Degradation metabolites were identified by their MS patterns as 3,4-dihydroxy fluorene, 2-(1-oxo-2,3-dihydro-1H-inden-2-yl) acetic acid, 3,4-dihydrocoumarin, salicylic acid, catechol, and oxalic acid. Metabolic pathway of degradation constructed, revealed that benzo(a)fluorene was metabolized via the formation of fluorene, further metabolized by salicylate pathway forming catechol. The catechol formed was degraded into simpler metabolites by meta-cleavage pathway, which was validated by catechol 2,3 dioxygenase enzyme activity.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas , Biodegradação Ambiental , Catecol 2,3-Dioxigenase/metabolismo , Catecóis/metabolismo , Fluorenos/metabolismo , Humanos , Cinética , Ácido Oxálico/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas/metabolismo , Ácido Salicílico/metabolismo
7.
Environ Res ; 214(Pt 1): 113796, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810811

RESUMO

In this study, indium-gallium-zinc oxide (IGZO)-decorated ZnO thin films were investigated through the change in IGZO deposition time for the detection of NO2 gas. The atomic layer deposited ZnO on interdigitated Au electrode alumina substrates are decorated with IGZO by controlling the deposition time. The IGZO (ZnO:Ga2O3:In2O3 = 1:1:1 mol. %) polycrystalline target was used for deposition and effect of deposition time was investigated. The sensor responses (Rgas/Rair) of 20.6, 39.3, and 57.1 and 45.2, 102.5, and 243.5 were obtained at 150 °C, 200 °C, and 250 °C and 25-ppm NO2 concentration for ZnO (Z1) and IGZO-decorated ZnO (Z3) films, respectively. The sensor response (Rgas/Rair) increased from ∼27 to 243.5 by decorating the ZnO film with IGZO for a 60-s sputtering time. The sensor recovery and response times of the IGZO-decorated ZnO/ZnO sensor increased, and the sensor selectivity to different gases was also evaluated.


Assuntos
Gálio , Óxido de Zinco , Gases , Índio , Dióxido de Nitrogênio , Compostos Orgânicos , Zinco
8.
Chemosphere ; 307(Pt 1): 135713, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35843436

RESUMO

Freshwater has been incessantly polluted by various activities such as rapid industrialization, fast growth of population and agricultural activities. Water pollution is considered as one the major threatens to human health and aquatic bodies which causes various severe harmful diseases including gastrointestinal disorders, asthma, cancer, etc. The polluted wastewater could be treated by different conventional and advanced methodologies. Amongst them, adsorption is the most utilized low cost, efficient technique to treat and remove the harmful pollutants from the wastewater. The efficiency of adsorption mainly depends on the surface properties such as functional group availability and surface area of the adsorbents used. Since various waste-based carbon derivatives are utilized as adsorbents for harmful pollutants removal; nanomaterials are employed as effective adsorbents in recent times due to its excellent surface properties. This review presents an overview of the different types of nanomaterials such as nano-particles, nanotubes, nano-sheets, nano-rods, nano-spheres, quantum dots, etc. which have been synthesized by different chemical and green synthesis methodologies using plants, microorganisms, biomolecules and carbon derivatives, metals and metal oxides and polymers. By concentrating on potential research difficulties, this study offers a new viewpoint on fundamental field of nanotechnology for wastewater treatment applications. This review paper critically reviewed the synthesis of nanomaterials more importantly green synthesis and their applications in wastewater treatment to remove the harmful pollutants such as heavy metals, dyes, pesticides, polycyclic aromatic hydrocarbons, etc.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanoestruturas , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbono , Corantes , Humanos , Óxidos , Polímeros , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
9.
Chemosphere ; 304: 135332, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709844

RESUMO

The motive of this work is to synthesis aromatic polyimides by a two-step poly condensation process and the prepared aromatic polyamides (APIs) is been used as an effective functionalized adsorbent for the removal of carcinogenic crystal violet (CV) from aqueous medium. The adsorption efficiency of the APIs was enhanced by incorporation different functional moieties (varying aromatic dianhydrides with -O-, -(CF3)2-, -(CH3)2-) in the polymer structure. The initial and final concentration of CV was measured using UV-Vis spectrometer. The adsorption process was optimized by varying the parameters such as the effect of solution pH, contact time, initial dye concentration, and adsorbent dosage. Kinetics and isotherms of the adsorption system were appraised using data obtained from effect of contact time and initial dye concentration with corresponding empirical modelling techniques respectively. The evaluated results of the adsorption kinetic studies confirmed that the adsorption of API onto CV is followed a pseudo-second-order kinetic model. The adsorption behaviour and their interactions between APIs and CV are well established. The experimental results of this research output could be confirmed that APIs is a very effective adsorbent for the removal of cationic dye from aqueous.


Assuntos
Violeta Genciana , Poluentes Químicos da Água , Adsorção , Violeta Genciana/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Água/química , Poluentes Químicos da Água/análise
10.
Chemosphere ; 294: 133731, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35090848

RESUMO

Nanotechnology for the past decade has made tremendous improvement and diverse applications in various sector. Among the nanomaterials synthesized, carbon allotropes are advantageous due to its easy functionalization, conductivity, surface area and electrical activity. Hence, they are termed as "Wonder materials". Allotropes such as carbon nanotubes, graphene, graphene oxide, fullerens, and carbon dots has paved its importance in the pharmaceuticals. They are coated in the biomedical devices, applied in the therapeutics and diagnosis. These are also used in the treatment of cancer and they possess anti-microbial and antiviral activity. Carbon nanomaterials possess several applications from biosensors to remediation of pollutants. Detection of hazardous compounds in food, pharmaceutical products, gene and drug delivery. They are also used in tissue regeneration and gene therapy. Application of carbon allotropes in the current scenario provides a wide scope in future with improvisations in building electrochemical biosensors. Its selectivity, sensitivity and cost-effectiveness prove it to be better alternative compared to other nanomaterials. The review focuses on the carbon allotropes used in pharmaceuticals, biosensors, pollutants detection and treatment were discussed in detail.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanotubos de Carbono , Preparações Farmacêuticas , Nanoestruturas/química , Nanotecnologia , Nanotubos de Carbono/química
11.
Chemosphere ; 287(Pt 2): 132231, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826923

RESUMO

The paramount cause of water scarcity is pollution, which is becoming a massive issue since the last century. Besides, it is evident that water pollution is the main cause of emerging contaminants that are left untreated from industries, can cause serious threats to humans and biota as well. One of the best ways in remediating pollutants and finding a way for generating useable water is to use this contaminated water after the necessary treatment. Heavy metals are of major concern in treatment because of their toxicity, non-biodegradability, carcinogenicity, and they can cause inevitable damages even at low concentrations. In this review article, available different flotation techniques are discussed to address this issue. Flotation tends to be one of the promising techniques that have shown a high scope because of its high produce, low sludge formation, and ease of operation. From the several pieces of literature, it can be inferred that the flotation process can be conducted in one step, and that does not need any expensive materials. Further, this paper deliberates the versatility of each process in disclosing its advantages, limitations, further scope of research and fills the loopholes in the process for better effectiveness. Overall, flotation is a highly probable as well as effective treatment technology to eradicate noxious pollutants present in wastewater and thus helps to compromise environmental and social sustainability.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise
12.
Chemosphere ; 290: 133248, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34906523

RESUMO

In this work, we have developed fluorescent detection techniques for the determination of Ni2+ ions in aqueous medium with sensitivity using metal coordinating fluorescent molecules namely 4-Halobenzylidene malanonitrile. The halogen substituted benzylidene malanonitile were synthesised Knoevenagel condensation reaction of various halogen substituted aromatic aldehydes with malanonitrile and products were characterised by IR and NMR spectroscopy. The obtained benzylidene malanonitiles and are exhibited a fluorescent emission with a peak of 430 nm, 440 nm and 448 nm for chloro, bromo and fluoro substituted compounds, respectively. The intensity of optical emission of the studied molecules is increased proportional to the addition of Ni2+ ions. The effect of different halogen substitution on the fluorescence behaviour of benylidene malononitrile has also been investigated. The synthesised title compounds showed a lowest detection limit of 10-20 M for the Nickel (II) ions in aqueous solution under UV-Vis absorption spectra. The molecule 4- Bromobenzylidene malanonitrile exhibited a lowest detection limit of 10-19 M for the Nickel (II) ions in, aqueous solution, photoluminescence analysis.


Assuntos
Níquel , Água , Íons
13.
Chemosphere ; 288(Pt 2): 132448, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34619253

RESUMO

In this world, water is considered as the Elixir for all living creatures. Human life rolls with water, and every activity depends upon water. Worldwide water resources are being contaminated due to the elevation in the population count, industrialization and urbanization. Ejection of chemicals by industries and domestic sewages remains the major reason in the destruction of natural water resources. Contaminated water with harmful microbes, chemical dyes, pesticides, and carcinogens are the root cause of many diseases and deaths of living species. In this scenario, researchers engaged in producing ultra components to remove the contaminants. Metal organic frameworks (MOF) are the desired combination of organic and inorganic materials to achieve the required target. MOFs possess unique characteristics like tunable internal structure, porosity, crystallinity and high surface area which enable them for energy and environmental application. For the past years, MOFs are concentrated more as a photocatalyst in the treatment of polluted water. These research studies discuss the improvement of photocatalytic performance of MOF by the incorporation of metals, metal coupled with nanoparticles like polymers, graphene, etc., into it to achieve the enhanced photocatalytic activity by scavenging entire chemicals and harmful microbes to retain the quality of water. The target of this review article is to focus on the state of the art research work on MOFs in photocatalytic water treatment technique.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Nanopartículas , Corantes , Humanos , Águas Residuárias
14.
Chemosphere ; 288(Pt 2): 132560, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34653482

RESUMO

In this study, Chitosan/ZnO nanocomposite (Ch/ZnO) and egg white/ZnO rice structured composite was synthesized by simple wet chemical technique and characterised by various techniques. A comparative electrochemical analysis were carried out and determined that egg white/ZnO rice structured composite modified screen printed electrode (SPCE) showed good electrochemical behaviour. The electrochemical activity of egg white/ZnO rice structured composite SPCE was investigated for the oxidation-reduction of formaldehyde in alkaline media using cyclic voltammetry (CV).Their unique electrocatalytic activity for the formaldehyde found to exhibit 254 mV cathodic current response towards low negative potentials. Based on these results, a novel screen printed sensor (Egg white albumin/ZnO rice structured composite) for the determination of formaldehyde was analysed using differential pulse voltammetry (DPV). The sensor response was linear from 0.001 mM to 0.005 mM with limit of detection (LOD) 6.2 nM and their sensitivity was found to be 770.68 mM/µA. The developed electrochemical formaldehyde sensor was successfully applied as working electrode in cyclic voltammetric determination of formaldehyde in urine samples. The sensor is selective, inexpensive, stable over several days and disposable as well as simple to manufacture and operate. The system described here can be easily be adapted to other substrates and used as practical tool for formaldehyde analysis.


Assuntos
Quitosana , Oryza , Óxido de Zinco , Clara de Ovo , Eletrodos , Formaldeído
15.
Chemosphere ; 291(Pt 1): 132808, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34762876

RESUMO

Arsenic is among the most harmful pollutants and can create severe public health effects from such a small volume of water. Electrodeionization was used to eradicate arsenic ions from groundwater in this research. Electrodeionization system incorporates hybrid electro dialysis/ion exchange to remove and concentrate Arsenic ions from water, then reuses the processed water. The findings indicate that Electrodeionization will remove arsenic from liquids at intensities varies from 5 to 25 ppm in batch recirculation mode and 5-15 ppm in continuous column analysis. Although the device demonstrated the maximum ion percentage removal, of about 100 percent, when operated at a low voltage range from 5 to 20 V. A number of column studies were conducted to establish the breakthrough curves with concentrations ranging from 5 to 15 ppm, applied voltages ranging from 5 to 20 V, and flow rates ranging from 5 to 20 mL/min. For the present work, Arsenic was eliminated up to 98.8 percent in the trials reported here, with energy usage in the Electrodeionization unit varying around 3.88 and 60.7 kW h per kilogram of removed arsenic. This demonstrates the application's ability and productivity in removing Arsenic from aqueous solutions.


Assuntos
Arsênio , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Concentração de Íons de Hidrogênio , Diálise Renal , Água , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 797: 149135, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311373

RESUMO

Azo dyes are highly toxic, which acts as a notable mutagen and carcinogen. This has a significant effect on human health, plants, animals, aquatic and terrestrial environments. Thus, the degradation of the azo dyes is exclusively studied using the conventional methods of which biodegradation is an eco-friendly approach. Hence, the present study is focused on the elucidation of reactive mixed azo dye degradation pathway using MBBR and laccase enzyme produced by an alkaliphilic bacterium P. mendocina. Synthetic wastewater treatment performed using MBBR was very effective which reduced the COD and BOD to 90 mg/L and 460 mg/L. The potential degrader P. mendocina was isolated and laccase enzyme was screened. Finally, the degradation pathway was elucidated. The in silico toxicity analysis predicted Reactive Red and Reactive Brown as developmental toxicants during Reactive Black as Developmental non-toxicant. Docking studies were performed to understand interaction of laccase with compounds evolved from dyes.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Compostos Azo , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Corantes , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Recursos Hídricos
17.
J Hazard Mater ; 418: 126299, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102361

RESUMO

Arsenic liberation and accumulation in the groundwater environment are both affected by the presence of primary ions and soluble organic matter. The most important influencing role in the co-occurrence is caused by human activity, which includes logging, agricultural runoff stream, food, tobacco, and fertilizers. Furthermore, it covers a wide range of developed and emerging technologies for removing arsenic impurities from the ecosystem, including adsorption, ion exchangers, bio sorption, coagulation and flocculation, membrane technology and electrochemical methods. This review thoroughly explores various arsenic toxicity to the atmosphere and the removal methods involved with them. To begin, the analysis focuses on the general context of arsenic outbreaks in the area, health risks associated with arsenic, and measuring techniques. The utilization of innovative functional substances such as graphite oxides, metal organic structures, carbon nanotubes, and other emerging types of composite materials, as well as the ease, reduced price, and simple operating method of the adsorbent material, are better potential alternatives for arsenic removal. The aim of this article is to examine the origins of arsenic, as well as identification and treatment methods. It also addressed recent advancements in Arsenic removal using graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other novel types of usable materials. Under ideal conditions for the above methods, the arsenic removal will achieve nearly 99% in lab scale.


Assuntos
Arsênio , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Arsênio/toxicidade , Ecossistema , Humanos , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Pollut ; 287: 117304, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015669

RESUMO

The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO2) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO2 need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO2 nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) - n (TiO2) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV-Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO2 catalyst towards improving or eliminating the existing various environmental damages.


Assuntos
Escherichia coli , Titânio , Antibacterianos , Catálise , Clorofenóis , Cobre , Luz , Fotólise
19.
Chemosphere ; 272: 129806, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601206

RESUMO

The objective of the current study was focused on the potential adsorption capability of a biogenic hydroxyapatite/iron nanoparticles-based composite tailored for the elimination of toxic pollutant, Cd(II) ions. Morphological along with physicochemical properties of composites were analyzed by different techniques including Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). It has been noticed an increase in cell parameters of prepared composites with an increase in the amount of nanoparticles. The best adsorbent was found to be the one with a 5% amount of nanoparticles (P400Fe(5%)). The kinetics studies have shown that the pseudo-first-order-models were in good agreement for the removal of Cd(II) ions onto P400Fe(5%) at any concentration, suggesting a physisorption mechanism. Besides, isotherms analysis has consistently revealed Freundlich as the model better explained the isotherm data, with a maximum removal capacity of 392.3 mg g-1, higher compared to many adsorbents. Thermodynamically, the removal adsorption process of Cd(II) ions onto the composite favorable, exothermic, and spontaneous. The regeneration study has been also investigated with reusability used until four cycles. The overall results pointed out the suitability and efficiency of the prepared biogenic composite for the elimination of metal pollutants in wastewater.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Animais , Cádmio , Bovinos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
20.
Chemosphere ; 263: 128071, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297075

RESUMO

Pomegranate peel, a major waste from the food processing industries containing biologically active compounds, could be converted into value-added products having medicinal properties. Present study deals with the ultrasound-assisted surfactant, namely dimethyl sulfoxide (DMSO) aided polyphenolics extraction from pomegranate peel waste using double distilled water (DDW) as a solvent. Maximum total yield of extraction and total polyphenolic content (TPC) were found respectively to be 43.58 ± 1.0 and 49.55 ± 0.8%, at optimized sonication parameters viz. temperature 50 °C, power density 1.2 W/mL and time 40 min followed by surfactant aided extraction under optimum conditions 0.6% DMSO, 50 °C and 150 rpm for 90 min. Kinetic models were developed to determine the polyphenolics concentration and validated. GC-MS analysis of the extract revealed 22 phenolic compounds. Thus, the acquired results have ensured the significance of ultrasound pre-treated surfactant aided extraction of polyphenolic compounds and this process can be developed for commercial production.


Assuntos
Frutas , Polifenóis , Dimetil Sulfóxido , Frutas/química , Extratos Vegetais , Polifenóis/análise , Tensoativos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA