Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13523, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866755

RESUMO

While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell and epithelial-mesenchymal transition marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.


Assuntos
Carcinogênese , Gangliosídeos , Células-Tronco Neoplásicas , Sialiltransferases , Masculino , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Sialiltransferases/metabolismo , Sialiltransferases/genética , Animais , Linhagem Celular Tumoral , Gangliosídeos/metabolismo , Camundongos , Carcinogênese/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Feniltioidantoína/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Benzamidas/farmacologia , Nitrilas/farmacologia
2.
Cancer Res Commun ; 4(5): 1328-1343, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38687198

RESUMO

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE: SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Transdução de Sinais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Humanos , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , NF-kappa B/metabolismo , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA