Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(9): e2302835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117082

RESUMO

Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Osteogênese/fisiologia , Lactobacillus acidophilus , Proteômica , Biofilmes , Inflamação/tratamento farmacológico
2.
Protein Sci ; 32(12): e4833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37937856

RESUMO

Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 ß-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Agregados Proteicos , Anticorpos Antivirais , Proteínas do Envelope Viral/química , Peptídeos/metabolismo , Proteínas Amiloidogênicas/metabolismo
3.
Virology ; 586: 12-22, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473502

RESUMO

Dengue viruses are human pathogens that are transmitted through mosquitoes. Apart from the typical symptoms associated with viral fevers, DENV infections are known to cause several neurological complications such as meningitis, encephalitis, intracranial haemorrhage, retinopathies along with the more severe, and sometimes fatal, vascular leakage and dengue shock syndrome. This study was designed to investigate, in detail, the predicted viral protein aggregation prone regions among all serotypes. Further, in order to understand the cross-talk between viral protein aggregation and aggregation of cellular proteins, cross-seeding experiments between the DENV NS1 (1-30), corresponding to the ß-roll domain and the diabetes hallmark protein, amylin, were performed. Various techniques such as fluorescence spectroscopy, circular dichroism, atomic force microscopy and immunoblotting have been employed for this. We observe that the DENV proteomes have many predicted APRs and the NS1 (1-30) of DENV1-3, 2K and capsid anchor of DENV2 and DENV4 are capable of forming amyloids, in vitro. Further, the DENV NS1 (1-30), aggregates are also able to cross-seed and enhance amylin aggregation and vice-versa. This knowledge may lead to an opportunity for designing suitable inhibitors of protein aggregation that may be beneficial for viral infections and comorbidities.


Assuntos
Vírus da Dengue , Proteínas Virais , Vírus da Dengue/química , Vírus da Dengue/classificação , Proteoma , Proteínas Virais/química , Proteínas Virais/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos , Humanos , Dengue/metabolismo , Dengue/patologia , Dengue/virologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia
4.
ACS Appl Mater Interfaces ; 14(36): 40659-40673, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36004755

RESUMO

The COVID-19 pandemic marks an inflection point in the perception and treatment of human health. Substantial resources have been reallocated to address the direct medical effects of COVID-19 and to curtail the spread of the virus. Thereby, shortcomings of traditional disinfectants, especially their requirement for regular reapplication and the related complications (e.g., dedicated personnel and short-term activity), have become issues at the forefront of public health concerns. This issue became especially pressing when infection-mitigating supplies dwindled early in the progression of the pandemic. In consideration of the constant threat posed by emerging novel viruses, we report a platform technology for persistent surface disinfection to combat virus transmission through nanomaterial-mediated, localized UV radiation emission. In this work, two formulations of Y2SiO5-based visible-to-UV upconversion nanomaterials were developed using a facile sol-gel-based synthesis. Our formulations have shown substantial antiviral activities (4 × 104 to 0 TCID50 units in 30 min) toward an enveloped, circulating human coronavirus strain (OC43) under simple white light exposure as an analogue to natural light or common indoor lighting. Additionally, we have shown that our two formulations greatly reduce OC43 RNA recovery from surfaces. Antiviral activities were further demonstrated toward a panel of structurally diverse viruses including enveloped viruses, SARS-CoV-2, vaccinia virus, vesicular stomatitis virus, parainfluenza virus, and Zika virus, as well as nonenveloped viruses, rhinovirus, and calicivirus, as evidence of the technology's broad antiviral activity. Remarkably, one formulation completely inactivated 105 infectious units of SARS-CoV-2 in only 45 min. The detailed technology has implications for the design of more potent, long-lived disinfectants and modified/surface-treated personal protective equipment targeting a wide range of viruses.


Assuntos
COVID-19 , Desinfetantes , Vírus , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Pandemias , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
5.
Inorg Chem ; 60(17): 13284-13298, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357751

RESUMO

Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(µ-SeR)2Mn(CO)3}2(µ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.


Assuntos
Antineoplásicos/farmacologia , Monóxido de Carbono/metabolismo , Complexos de Coordenação/farmacologia , Compostos Organosselênicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Células HEK293 , Cavalos , Humanos , Manganês/química , Manganês/toxicidade , Estrutura Molecular , Mioglobina/efeitos dos fármacos , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/toxicidade
6.
Virology ; 560: 8-16, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020329

RESUMO

Capsid-anchor (CA) of Zika virus (ZIKV) is a small, single-pass transmembrane sequence that separates the capsid (C) protein from downstream pre-membrane (PrM) protein. During polyprotein processing, CA is cleaved-off from C and PrM and left as a membrane-embedded peptide. CA plays an essential role in the assembly and maturation of the virus. However, its independent folding behavior is still unknown. Therefore, in this study, we investigated the amyloid-forming propensity of CA at physiological conditions. We observed the aggregation behavior of CA peptide using dye-binding assays and ThT kinetics. The morphological analysis of CA aggregates explored by high-resolution microscopy (TEM, AFM) and Far-UV CD spectroscopy revealed characteristic amyloid-like fibrils rich in ß-sheet secondary structure. Further, the effect on mammalian cells exhibited the cytotoxic nature of the CA amyloid-fibrils. Our findings collectively shed light on the amyloidogenic phenomenon of flaviviral protein, which may contribute to their infection.


Assuntos
Amiloide/química , Proteínas do Capsídeo/metabolismo , Agregados Proteicos/fisiologia , Infecção por Zika virus/patologia , Capsídeo/metabolismo , Simulação por Computador , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteínas do Envelope Viral/metabolismo , Zika virus/metabolismo
7.
Cureus ; 12(8): e9675, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32923270

RESUMO

Oxidative injury is implicated in retinal damage observed in age-related macular degeneration (AMD), as well as other degenerative conditions. Abnormally elevated levels of iron accumulation within the retinal pigment epithelium have been detected in eyes with AMD, and it is suspected to play a role in the pathogenesis through the production of reactive oxygen species (ROS). Ceria nanoparticles (CNP) have the ability to scavenge ROS. This study sought to evaluate the ability of CNP to mitigate iron-induced oxidative stress and assess cell viability in the human ARPE-19 cell line in vitro. Cell viability was measured by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and compared between experimental groups undergoing 48-hr exposure to a ferrous iron solution with and without 24-hr CNP pre-treatment. The CNP effect on ROS formation was evaluated additionally by H2DCFDA (2,7-dichlorodihydrofluorescein diacetate) fluorescent probe assay and superoxide dismutase assay. CNP demonstrated a three-fold increase in cell viability and a reduction in ROS generation. The results show a promising treatment modality for diseases causing oxidative damage in the eye.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA