Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
J Chromatogr Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745428

RESUMO

In the present work, new chiral stationary phase high-performance liquid chromatography (CSP-HPLC) method was established and validated for the quantification of pomalidomide (PMD) enantiomers in human plasma. The chromatographic enantiomeric separation was achieved on a Daicel-CSP, Chiralpack IA 4.6 × 250 mm, 5 µm; because of its advantages of high degree of retention, high resolution capacity, better reproducibility, ability to produce lower back pressure and low degree of tailing. The mobile phase was maintained as methanol: glacial acetic acid (499.50 ml:50 µL). Ultraviolet wavelength for detection was 220 nm. PMD enantiomer-I and enantiomer-II were separated at 8.83 and 15.34 min, respectively. Limit of detection and limit of quantification for each enantiomer and the calibration curve of standard PMD was linear in range between 10-5,000 ng mL-1. The method was validated according to The International Council for Harmonisation of Technical Requirements of Pharmaceuticals for Human Use (ICH(Q2R1)) specific guidelines. We found no interference peak with PMD chromatogram obtained. This is a simple, reliable and specific method for detection and quantification of enantiomer of PMD in human plasma sample.

2.
Cureus ; 16(4): e58642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38770455

RESUMO

Impella 5.5 (Abiomed Inc., Danvers, MA, USA) is a surgically implanted mechanical circulatory support device that helps support hemodynamically compromised patients. The device's risks and benefits must be entirely known, especially in the electrophysiology lab. Due to unexpected hemodynamic changes during pace mapping and ablation, such as ventricular tachycardia (VT) and asystole, it is sometimes necessary to implement chemical support with inotropic agents such as epinephrine or mechanical support with devices such as an Impella. We present the case of a 72-year-old male with a biventricular implantable cardioverter-defibrillator (ICD) (Medtronic, Minneapolis, MN, USA) placed for refractory VT presenting for VT ablation. He had ischemic cardiomyopathy with a left ventricular ejection fraction (LVEF) of 33% and medical history of cardiac sarcoidosis, hypertension, hyperlipidemia, pulmonary embolism, left bundle branch block, and coronary artery disease. Due to the nature of the procedure and his history of arrhythmia, the patient was deemed a candidate for Impella 5.5. After evaluating patient risk factors, the cardiothoracic anesthesia team developed a strategic approach with imaging (including radiographic and echocardiographic imaging), Impella monitoring, and pharmacologic management with inotropes and vasopressors, allowing for uncomplicated perioperative management during the ablation. Given the procedure's intricacies and the patient's arrhythmia history, the medical team identified the patient as suitable for Impella 5.5 due to better performance and greater cardiac output than Impella 2.5 (Abiomed Inc., Danvers, MA, USA). Following a thorough assessment of the patient's risk factors, the cardiothoracic anesthesia team devised a comprehensive strategy to facilitate smooth perioperative management during the ablation, minimizing complications. The VT ablation procedure was performed successfully and effectively terminated the arrhythmia. However, the patient developed multifaceted postoperative complications, including cardiogenic shock, hemorrhagic shock, dyspnea, anemia, gastrointestinal abnormalities, and sepsis.  This case represents a highly complex patient scenario under the care of the cardiovascular anesthesiologist due to the nature of the procedure and numerous cardiovascular comorbidities, low ejection fraction, ICD placement, and malignant ventricular arrhythmia. We discuss the various perioperative management strategies and how they are tailored to such patients, including pharmacologic intervention, anesthesia administration, imaging modalities, and postoperative care. The purpose of this case report is to delineate the role of Impella 5.5 in perioperative care for high-risk VT ablation patients. We discuss the progression, pathophysiology, and management of this patient's multisystem complications following the procedure. We also highlight the use of Impella 5.5 in the electrophysiology lab and the anesthesia considerations, safeguards, and management strategies to optimize perioperative outcomes and avoid complications.

3.
J Mol Graph Model ; 130: 108789, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38718434

RESUMO

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that modulates integrin and growth factor signaling pathways and is implicated in cancer cell migration, proliferation, and survival. Over the past decade various, FAK kinase, FERM, and FAT domain inhibitors have been reported and a few kinase domain inhibitors are under clinical consideration. However, few of them were identified as multikinase inhibitors. In kinase drug design selectivity is always a point of concern, to improve selectivity allosteric inhibitor development is the best choice. The current research utilized a pharmacophore modeling (PM) approach to identify novel allosteric inhibitors of FAK. The all-available allosteric inhibitor bound 3D structures with PDB ids 4EBV, 4EBW, and 4I4F were utilized for the pharmacophore modeling. The validated PM models were utilized to map a database of 770,550 compounds prepared from ZINC, EXIMED, SPECS, ASINEX, and InterBioScreen, aiming to identify potential allosteric inhibitors. The obtained compounds from screening step were forwarded to molecular docking (MD) for the prediction of binding orientation inside the allosteric site and the results were evaluated with the known FAK allosteric inhibitor (REF). Finally, 14 FAK-inhibitor complexes were selected from the docking study and were studied under molecular dynamics simulations (MDS) for 500 ns. The complexes were ranked according to binding free energy (BFE) and those demonstrated higher affinity for allosteric site of FAK than REF inhibitors were selected. The selected complexes were further analyzed for intermolecular interactions and finally, three potential allosteric inhibitor candidates for the inhibition of FAK protein were identified. We believe that identified scaffolds may help in drug development against FAK as an anticancer agent.

4.
Mar Pollut Bull ; 203: 116498, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761682

RESUMO

Heavy metal enrichment in river sediments poses a significant risk to human and aquatic health. The Yamuna River faces severe challenges due to untreated industrial and domestic wastewater discharge. The study evaluates sediment metal content, ecological and human health risks, and potential sources. Results showed Cd and Pb exhibited moderate to severe contamination and displayed ecological risk based on contamination factor, enrichment factor, and potential ecological risk. According to synergistic indices (pollution load index, PINemerow, toxic risk index, contamination security index, mean probable effects level quotients, and probability of toxicity), the sediment in the Yamuna River doesn't seem to have a risk or enrichment from combined metals. Cd and Pb mainly originate from anthropogenic sources. Hazard index (< 1) and carcinogenic risk (2.2 × 10-7 to 4.7 × 10-5) assessments suggest metal didn't pose any risk to humans exposed to sediment. The present study aids in developing pollution control strategies for the Yamuna River.

5.
Cureus ; 16(2): e55294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558718

RESUMO

BACKGROUND: Lenalidomide and Pomalidomide are chiral immunomodulatory drugs (IMiDs) and have antiangiogenic and anti-immunomodulatory activity. Each enantiomer may have distinct binding and biological activity. This study aimed to explore the in-silico binding of both enantiomers of Lenalidomide and Pomalidomide with Prostaglandin and its potential impact on persisting inflammatory activity in cancer. This can further provide insight into the transport of pro-inflammatory mediators and their potential implications for the inflammatory microenvironment within tumors. MATERIALS AND METHODS: Molecular docking studies were performed to explore the binding potential of both enantiomers of Lenalidomide and Pomalidomide with Pg protein. The crystal structure of Pg-protein (PDB ID: 1IW7) was obtained from the Protein Data Bank. RESULTS: The binding energies for (-)-Lenalidomide and (+)-Lenalidomide were -6.7 and -7.2 kcal/mol, respectively, while the binding energies for (-)-Pomalidomide and (+)-Pomalidomide were -7.8 and -8.1 kcal/mol, respectively. The binding mode analysis revealed that all four compounds formed hydrogen bonds with key amino acid residues of Pg-protein. The hydrogen bond distances for (-)-Lenalidomide, (+)-Lenalidomide, (-)-Pomalidomide, and (+)-Pomalidomide were 2.1 Å, 2.0 Å, 2.2 Å, and 2.1 Å, respectively. CONCLUSIONS: The present study suggests that both enantiomers of Lenalidomide and Pomalidomide have a high affinity for Pg-protein and can effectively target the Pg-protein pathway to persist inflammatory activity in cancer. By targeting inflammation-mediated processes, these drugs may offer a novel strategy to combat tumor progression.

6.
Chem Biodivers ; : e202400059, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584309

RESUMO

Hepatocellular carcinoma (HCC) arises from precancerous nodules, leading to liver damage and inflammation, which triggers the release of proinflammatory cytokines. Dysregulation of these cytokines can escalate into a cytokine storm, causing severe organ damage. Interestingly, Moringa oleifera (M. oleifera) fruit peel, previously discarded as waste, contains an abundance of essential biomolecules and high nutritional value. This study focuses on the eco-friendly synthesis of silver nanoparticles infused with M. oleifera peel extract biomolecules and their impact on regulating proinflammatory cytokines, as well as their potential anticancer effects against Wistar rats. The freshly synthesized nanoformulation underwent comprehensive characterization, followed by antihepatic cancer evaluation using a diethyl nitrosamine-induced model (at a dose of 200 mg kg-1 BW). The study demonstrates a significant reduction in proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, interleukin-1ß, and nuclear factor kappa beta (NF-κB). Furthermore, it confirms that the newly biosynthesized silver nanoparticles exhibit additional potential against hepatic cancer due to their capped biomolecules.

7.
Curr Med Chem ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38584537

RESUMO

Today, one of the most prevalent reasons for death among people is carcinoma. Because it is still on the increase throughout the world, there is a critical need for in- -depth research on the pathogenic mechanisms behind the disease as well as for efficient treatment. In the field of epigenetics, gene expression alterations that are inherited but not DNA sequence changes are investigated. Three key epigenetic changes, histone modifications, DNA methylation and non-coding RNA (ncRNA) expression, are principally responsible for the initiation and progression of different tumors. These changes are interconnected and constitute many epigenetic changes. A form of polyphenolic chemical obtained from plants called curcumin has great bioactivity against several diseases, specifically cancer. A naturally occurring substance called thymoquinone is well-known for its anticancer properties. Thymoquinone affects cancer cells through a variety of methods, according to preclinical studies. We retrieved information from popular databases, including PubMed, Google Scholar, and CNKI, to summarize current advancements in the efficiency of curcumin against cancer and its epigenetic regulation in terms of DNA methylation, histone modifications, and miRNA expression. The present investigation offers thorough insights into the molecular processes, based on epigenetic control, that underlie the clinical use of curcumin and thymoquinone in cancerous cells.

8.
Foods ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672900

RESUMO

Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.

10.
Nat Cell Biol ; 26(4): 613-627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429478

RESUMO

The ability of tumour cells to thrive in harsh microenvironments depends on the utilization of nutrients available in the milieu. Here we show that pancreatic cancer-associated fibroblasts (CAFs) regulate tumour cell metabolism through the secretion of acetate, which can be blocked by silencing ATP citrate lyase (ACLY) in CAFs. We further show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) channels the exogenous acetate to regulate the dynamic cancer epigenome and transcriptome, thereby facilitating cancer cell survival in an acidic microenvironment. Comparative H3K27ac ChIP-seq and RNA-seq analyses revealed alterations in polyamine homeostasis through regulation of SAT1 gene expression and enrichment of the SP1-responsive signature. We identified acetate/ACSS2-mediated acetylation of SP1 at the lysine 19 residue that increased SP1 protein stability and transcriptional activity. Genetic or pharmacologic inhibition of the ACSS2-SP1-SAT1 axis diminished the tumour burden in mouse models. These results reveal that the metabolic flexibility imparted by the stroma-derived acetate enabled cancer cell survival under acidosis via the ACSS2-SP1-SAT1 axis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Acetatos/farmacologia , Acetatos/metabolismo , Neoplasias Pancreáticas/genética , Poliaminas , Microambiente Tumoral
11.
3 Biotech ; 14(4): 112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38510462

RESUMO

Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.

12.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1255-1259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440616

RESUMO

Gorlin-Goltz syndrome (GGS) is a rare hereditary disease characterized by multiple basal cell carcinomas, odontogenic keratocyst (OKCs) and musculoskeletal malformations. Pathogenesis of the syndrome is attributed to abnormalities in the long arm of chromosome 9 (q22.3-q31) and mutations in the human patched gene (PTCH1 gene). Here, we report a rare case of an incidental finding of GGS in an 18-year-old male patient presenting multiple OKCs, calcification of the falx cerebri, and bifid rib.

13.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1161-1163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440484

RESUMO

Cleidocranial dysplasia (CCD) is a rare genetic disorder affecting primarily the cranium, clavicle, and dental tissues. The expression of this disorder can vary widely in severity, even within the same family. Here we present a case report of an affected mother and son with classical manifestations of the disease.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38347431

RESUMO

Chemotherapy and immunotherapy are two important modalities in cancer management. However, due to multiple reasons, a monotherapy is only partially effective. Hence, if used concurrently in targeted and stimuli-responsive manner, it could have been superior therapeutically. To facilitate co-delivery of chemotherapeutic and immunotherapeutic agent to the target cancer cells, engineered nanoparticles, i.e., a pH-responsive polymer PLGA-coated magnetic silica nanoparticles (Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs) encapsulating paclitaxel (PTX) and siRNA against programmed cell death ligand-1 (PD-L1) are synthesized and characterized. Developed nanoparticles demonstrated pH-sensitive sustained drug release up to 10 days. In vitro 4T1 cell line studies showed efficient cellular uptake, PD-L1 gene downregulation, and apoptosis. Further, in vivo efficacy studies carried out in the mice model demonstrated a significant reduction of tumor growth following treatment with dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs as compared with monotherapy with Fe3O4-SiO2-PLGA-PDA-PTX NPs. The high therapeutic efficacy observed with dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs was mainly due to the cytotoxic effect of PTX combined with targeted silencing of the gene of interest, i.e., PD-L1, which in turn improve CD8+ T cell-mediated cancer cell death as evident with increased proliferation of CD8+ T cells in co-culture experiments. Thereby, dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs may have a promising anti-cancer treatment potential against breast cancer; however, the beneficial effects of dual loading of PTX + PD-L1 siRNA may be corroborated against other cancer models such as lung and colorectal cancer models as well as in clinical trials.

15.
Langmuir ; 40(5): 2754-2763, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38275136

RESUMO

Peptide amphiphiles (PAs) are known for their remarkable ability to undergo molecular self-assembly, a process that is highly responsive to the local microenvironment. Herein, we design a pyrene tethered peptide amphiphile Py-VFFAKK, 1 that exhibits pathway-driven self-assembly from metastable nanoparticles to kinetically controlled nanofibers and thermodynamically stable twisted bundles upon modulations in pH, temperature, and chemical cues. The presence of the pyrene moiety ensures donation of the electron to an electron acceptor, namely, 7,7,8,8-tetracyanoquinodimethane (TCNQ), to form a supramolecular charge transfer complex in aqueous solution that was studied in detail with microscopic and spectroscopic techniques. Excitation of the donor species in its excimer state facilitates electron donation to the acceptor moiety, paving away a long-lived charge-separated state that persists for over a nanosecond, as ascertained through transient absorption spectroscopy. Finally, the self-assembled charge transfer complex is explored toward antimicrobial properties with Escherichia coli while maintaining biocompatibility toward L929 mice fibroblast cells.


Assuntos
Sinais (Psicologia) , Nanofibras , Animais , Camundongos , Peptídeos/farmacologia , Peptídeos/química , Análise Espectral , Nanofibras/toxicidade , Nanofibras/química , Pirenos
16.
Expert Opin Biol Ther ; 24(1-2): 51-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284349

RESUMO

INTRODUCTION: Immunotherapies have revolutionized the management of various malignancies but have only recently been evaluated systematically in prostate cancer. Pembrolizumab, a programmed-death 1 (PD-1) blocking antibody, has been utilized in a small subset of prostate cancer patients with mismatch repair deficiency/microsatellite instability, but has now been assessed in broader populations of metastatic prostate cancer patients. AREAS COVERED: The results of four pembrolizumab-based phase III clinical trials for metastatic castration-resistant prostate cancer (mCRPC) and metastatic hormone-sensitive prostate cancer (mHSPC) patients, including KEYNOTE-641, KEYNOTE-921, KEYNOTE-991, and KEYLYNK-010 are summarized. Programmed death-ligand 1 (PD-L1) expression, the efficacy of pembrolizumab in prostate cancer patients with certain molecular defects, and emerging pembrolizumab-based therapeutic combinations are also reviewed. EXPERT OPINION: Pembrolizumab has not benefitted unselected metastatic prostate cancer patients when combined with chemotherapy, next-generation hormonal agents (NHA), or poly(ADP-ribose) polymerase inhibitors (PARPi). PD-L1 positivity does not predict the response to pembrolizumab in this disease. A small number of responding patients can likely be explained by rare genetic and molecular defects, and more innovative combination strategies are needed to improve outcomes in prostate cancer patients who are not sensitive to pembrolizumab. Emphasis should be placed on developing additional or alternative immuno-oncology approaches beyond classical immune checkpoint inhibition.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antígeno B7-H1 , Anticorpos Monoclonais Humanizados/efeitos adversos
17.
Cell Rep Med ; 5(1): 101354, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38183981

RESUMO

Targeting oncogenes at the genomic DNA level can open new avenues for precision medicine. Significant efforts are ongoing to target oncogenes using RNA-targeted and protein-targeted platforms, but no progress has been made to target genomic DNA for cancer therapy. Here, we introduce a gamma peptide nucleic acid (γPNA)-based genomic DNA-targeted platform to silence oncogenes in vivo. γPNAs efficiently invade the mixed sequences of genomic DNA with high affinity and specificity. As a proof of concept, we establish that γPNA can inhibit c-Myc transcription in multiple cell lines. We evaluate the in vivo efficacy and safety of genomic DNA targeting in three pre-clinical models. We also establish that anti-transcription γPNA in combination with histone deacetylase inhibitors and chemotherapeutic drugs results in robust antitumor activity in cell-line- and patient-derived xenografts. Overall, this strategy offers a unique therapeutic platform to target genomic DNA to inhibit oncogenes for cancer therapy.


Assuntos
Neoplasias , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , DNA/genética , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/genética , RNA , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38252298

RESUMO

Rubus ellipticus Smith. (Family Rosaceae), often known as the yellow Himalayan raspberry (Yellow Hissar), is one of the most widely used edible fruits in Indian folk medicinal systems. The current review aims to identify the gap between research and existing applications of this fruit to help scientists explore the current trends and opportunities for future development. Fruits of R. ellipticus are the source of several classes of compounds. Fruits of R. ellipticus are also rich in nutrients such as carbohydrates, vitamins, and minerals. It has been shown to have significant medical value in a variety of studies, including as an anti-diabetic, nephroprotective, anti-inflammatory, analgesic, antipyretic, antitumor, wound healing, antifertility, oviposition deterrent, antibacterial, and antioxidant. Fruits of R. ellipticus have been the subject of several in vitro and in vivo investigations, all of which have corroborated their wide range of biological activities and demonstrated their potential for the identification of new therapeutic candidates and the development of innovative herbal food supplements. Additional mechanism-based pharmacological evaluation and clinical research should provide an adequate scientific basis for the traditional usage of R. ellipticus fruits, which is currently not sufficiently supported by the available research on its active components and molecular mechanisms.

19.
Mar Pollut Bull ; 199: 115950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183833

RESUMO

Various environmental indicators were used to evaluate the water and sediment quality of the Netravathi-Gurupur estuary, India, for trace metals and pesticide pollution. The descended order of studied metal concentrations (µg/L) in the water was Fe (592.71) > Mn (98.35) > Zn (54.69) > Cu (6.64) > Cd (3.24) > Pb (2.38) > Cr (0.82) and in sediment (mg/kg) was Fe (11,396.53) > Mn (100.61) > Cr (75.41) > Zn (20.04) > Cu (12.77) > Pb (3.46) > Cd (0.02). However, pesticide residues were not detected in this estuarine environment. The various metal indexes categorised the water as uncontaminated, whereas contamination factor, enrichment factor, geo-accumulation index, degree of contamination and pollution load index indicated low to moderate sediment contamination. Multivariate statistics showed that the dominance of natural sources of trace metals with little anthropogenic impact. Improvement in water/sediment quality during the study period might be due to COVID-19 imposed lockdown.


Assuntos
Metais Pesados , Praguicidas , Poluentes Químicos da Água , Metais Pesados/análise , Estuários , Sedimentos Geológicos/química , Água , Poluentes Químicos da Água/análise , Cádmio , Chumbo , Monitoramento Ambiental , Índia , Medição de Risco
20.
Biol Trace Elem Res ; 202(3): 1235-1248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37410267

RESUMO

Ganga river is the inhabitant of more than 190 fish species and important river system of India. Potentially toxic elements (PTEs) in the Gangetic riverine ecosystem are a hot environmental issue. A detailed evaluation of PTEs bioaccumulation in Gangetic fishes is required to safeguard human health. The present study investigated the bioaccumulation of PTEs (Cd, Co, Cr, Cu, Li, Ni, Pb, Se, Zn, and Mn) within 12 economic fish species (n = 72) collected from the lower Gangetic stretch. The mean concentrations of PTEs followed the order Zn > Cu > Mn > Ni > Se > Cr > Pb > Co ~ Li > Cd. Li and Se bioaccumulation were studied first time from Gangetic fishes. Results demonstrated that all the selected PTEs were below the maximum permissible limit recommended by reference standards except for Zn in L. catla and L. rohita. For all PTEs, the metal pollution index (MPI), hazard quotient (THQ), and hazard index (HI) were < 1, indicating that these PTEs do not pose a health risk to the public through the dietary intake of fish in this study area. All studied fish were acceptable in terms of carcinogenic risk (CR) from exposure to Cd, Cr, and Pb. Multivariate statistical analysis suggests that inter-correlated metals have similar dispersion properties and bioaccumulation homology within the body. This study provides a scientific basis for food safety assessment and continuous monitoring of PTEs in Gangetic fishes is suggested in the future to safeguard human health.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Ecossistema , Bioacumulação , Cádmio/análise , Chumbo/análise , Peixes , Medição de Risco , Segurança Alimentar , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA