Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Curr Pharm Des ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39279108

RESUMO

Various ailments have been treated with pineapple [Ananas comosus (L.) Merr.] throughout medicinal history. Pineapple and its bioactive compound bromelain possess health-promoting benefits. Detailed information on the chemotherapeutic activities of pineapple and its bioactive compound bromelain is provided in this review, which analyses the current literature regarding their therapeutic potential in cancer. Research on disease models in cell cultures is the focus of much of the existing research. Several studies have demonstrated the benefits of pineapple extract and bromelain for in vitro and in vivo cancer models. Preliminary animal model results show promise, but they must be translated into the clinical setting. Research on these compounds represents a promising future direction and may be well-tolerated.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39108105

RESUMO

Antioxidants play a pivotal role in maintaining skin health and integrity, combating the deleterious effects of oxidative stress induced by environmental aggressors such as UV ra-diation, pollution, and lifestyle factors. This paper reviews the contributions of key antioxidants, including Vitamin C, Vitamin E, Vitamin A, green tea extract, Coenzyme Q10, Resveratrol, Selenium, and Polyphenols, in skin health care. Vitamin C, known for its collagen synthesis promotion and photoprotection properties, alongside Vitamin E, a lipid-soluble antioxidant, syn-ergistically works to neutralize free radicals and repair damaged skin cells. Vitamin A, in the form of retinol, plays a critical role in skin cell regeneration and the maintenance of skin integ-rity. Green tea extract, rich in Polyphenols, offers anti-inflammatory and anticarcinogenic prop-erties, making it a potent ingredient for skin protection. Coenzyme Q10, a naturally occurring antioxidant in the body, aids in energy production for cell repair and regeneration, while Resveratrol, found in grapes and berries, provides anti-ageing benefits by enhancing skin's re-sistance to oxidative stress. Selenium, an essential mineral, contributes to the protection of skin cells from oxidative damage. The incorporation of these antioxidants in skincare products and dietary sources is discussed, highlighting the importance of a holistic approach in skincare re-gimes. The paper emphasizes the synergy between topical applications and dietary intake of antioxidants, advocating for a comprehensive strategy for promoting skin health and preventing age-related skin alterations. Method: For the review article, a variety of search engines and databases were used to identify relevant articles. Furthermore, for biomedical literature focusing on antioxidants and their ef-fects on skin health, PubMed was used. Moreover, to access a wide range of scholarly articles, including those related to dermatology and skincare, Google Scholar was used. Scopus provides comprehensive coverage of peer-reviewed literature across various scientific disciplines. Web of Science identifies high-impact articles and research on antioxidants in skincare. In addition, for accessing full-text articles on antioxidants and their applications in dermatology, Science Direct was used. The inclusion criteria for the review paper were as follows: only studies pub-lished in peer-reviewed journals were included to ensure the credibility and reliability of the information. Articles published in English were considered, to avoid language-related biases and ensure comprehension. Studies published within the last 10 years were included to provide the most current insights into antioxidant research in skincare. Articles must specifically focus on the role of antioxidants (Vitamin C, Vitamin E, Vitamin A, green tea extract, Coenzyme Q10, Resveratrol, Selenium, Polyphenols) in skin health care. Both experimental studies (in vivo and in vitro) and clinical trials were included to provide a comprehensive overview of the antioxidant effects. Full-text articles were included to allow for thorough data extraction and analysis. The exclusion criteria for the review paper were as follows: Publications that were not peer-re-viewed, such as editorials, opinion pieces, and non-scholarly articles, were excluded. Articles published in languages other than English were excluded due to potential translation challenges and to maintain consistency. Studies that did not focus on the specified antioxidants or their impact on skin health were excluded. Duplicate publications were excluded to avoid redundancy in the review. Articles with insufficient or incomplete data were excluded to ensure the quality and reliability of the review findings.

3.
J Clin Oncol ; : JCO2400205, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151112

RESUMO

PURPOSE: Sclerotic chronic graft-versus-host disease (cGVHD) represents a highly morbid and refractory form of cGVHD, and novel therapies for sclerotic cGVHD are critically needed. This study aimed to determine the efficacy of ruxolitinib in patients with corticosteroid refractory sclerotic cGVHD. PATIENTS AND METHODS: In a single-arm multicenter phase II trial (N = 47), adults with sclerotic cGVHD refractory to corticosteroids and ≥one additional line of systemic therapy for cGVHD received ruxolitinib for ≥six months (ClinicalTrials.gov identifier: NCT03616184). The primary end point was complete or partial response (PR) in skin and/or joint defined according to the 2014 National Institute of Health cGVHD Consensus Criteria. RESULTS: Following the use of ruxolitinib for a median of 11 months, PR in skin and/or joints was noted in 49% (95% CI, 34 to 64) at 6 months, with 45% having joint and fascia response and 19% having skin response. The duration of skin/joint response was 77% (95% CI, 48 to 91) at 12 months. Overall cGVHD PR was noted in 47% (95% CI, 32 to 61). Improvement in Lee Symptom Scale summary and skin subscale scores was noted in 38% of patients. With a cumulative incidence of treatment failure of 20.8% (95% CI, 10.0 to 34.1), nonrelapse mortality (NRM) of 2.2% (95% CI, 0.17 to 10.3), and no recurrent malignancy, failure-free survival (FFS) was 77.1% (95% CI, 61.3 to 87.0) at 12 months. Ruxolitinib was overall well tolerated with no new safety signals. CONCLUSION: The use of ruxolitinib was associated with relatively high rates of skin/joint responses and overall cGVHD responses, improvement in patient-reported outcomes, low NRM, and high FFS in patients with refractory sclerotic cGVHD. Ruxolitinib offers an effective treatment option for refractory sclerotic cGVHD.

4.
ACS Sustain Chem Eng ; 12(26): 9658-9668, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38966237

RESUMO

Poly(ethylene 2,5-furanoate) (PEF) is considered to be the next-generation green polyester and is hailed as a rising star among novel plastics. It is biobased, is nontoxic, and has comparable or improved properties compared to polyethylene terephthalate (PET). Biobased PEF offers lower life-cycle greenhouse gas emissions than PET. However, with its industrial production starting soon, relatively little is known about its actual recyclability. This work reports on the near complete depolymerization of PEF using two efficient PET hydrolases, FastPETase and leaf compost-cutinase (LCC), at loadings 4.5-17 times lower than previously reported. FastPETase and LCC exhibited maximum depolymerization of PEF, measured by weight loss and 2,5-furandicarboxylic acid (FDCA) production, using potassium phosphate-NaOH buffer at 50 and 65 °C, respectively. The 98% depolymerization of 13 g L-1 PEF film was achieved by three additions of the LCC in 72 h, while 78% weight loss was obtained using FastPETase in controlled conditions. Nonetheless, 92% weight loss was obtained with FastPETase when using only 6 g L-1 PEF. The main reaction products were identified as FDCA, ethylene glycol, and mono(2-hydroxyethyl)-furanoate. LCC performed better than FastPETase, in terms of both FDCA release and weight loss. The effect of crystallinity was evident on the enzymes' performance, as only 4% to 7% weight loss of crystalline PEF (32%) was recorded. Microscopy studies of the treated PEF films provided information on the surface erosion processes and revealed higher resistance of the crystalline phase, explaining the low level of depolymerization. The study presents important insights into the enzymatic hydrolysis of biobased PEF material and paves the path toward more viable applications within biopolymer waste recycling.

5.
Cell Death Discov ; 10(1): 158, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553450

RESUMO

Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to excessive toxicity. ONC201 is a dual PI3K/AKT and MEK pathway inhibitor with an excellent safety profile that targets death receptor 5 (DR5) to induce apoptosis. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable and can be stabilized by a prodrug approach. In this study, phospho-Akt, phospho-mTOR, and phospho-ERK protein expressions were evaluated in patient PDAC-tissues (n = 10). We used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. Further, we evaluated the efficacy of L_GEM and ONC201 in PC cells and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. PDAC patient tissues showed significantly higher levels of p-AKT (Ser473), p-ERK (T202/T204), and p-mTOR compared to surrounding non-cancerous tissues. ONC201 in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. In our in-vivo study, we found that ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade to overcome chemoresistance and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate the effect of GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.

6.
Future Med Chem ; 16(6): 563-581, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38353003

RESUMO

This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.


Assuntos
Anti-Infecciosos , Tiadiazóis , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia , Tiadiazóis/farmacologia , Tiadiazóis/química , Ciclização
7.
Artigo em Inglês | MEDLINE | ID: mdl-38321901

RESUMO

Lung cancer is the second deadliest disease in the world. A major portion of deaths related to cancer are due to lung cancer in both males and females. Interestingly, unbelievable advances have occurred in recent years through the use of nanotechnology and development in both the diagnosis and treatment of lung cancer. Due to their in vivo stability, the nanotechnology-based pharmacological system gained huge attractiveness, solubility, absorption from the intestine, pharmacological effectiveness, etc. of various anticancer agents. However, this field needs to be utilized more to get maximum results in the treatment of lung cancer, along with wider context medicines. In the present review, authors have tried to concentrate their attention on lung cancer`s difficulties along with the current pharmacological and diagnostic situation, and current advancements in approaches based on nanotechnology for the treatment and diagnosis of lung cancer. While nanotechnology offers these promising avenues for lung cancer diagnosis and treatment, it is important to acknowledge the need for careful evaluation of safety, efficacy, and regulatory approval. With continued research and development, nanotechnology holds tremendous potential to revolutionize the management of lung cancer and improve patient outcomes. The review also highlights the involvement of endocrine systems, especially estrogen in lung cancer proliferation. Some of the recent clinical trials and patents on nanoparticle-based formulations that have applications in the treatment and diagnosis of lung cancer are also discussed.

9.
J Clean Prod ; 435: 140240, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38268972

RESUMO

Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a 'no burn' pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a -0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8-4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative 'no burn' residue management practices.

10.
Cancer Lett ; 579: 216462, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37924937

RESUMO

Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias , Neoplasias Pancreáticas , Humanos , Neoplasias/patologia , Células Matadoras Naturais , Imunoterapia , Neoplasias Pancreáticas/terapia , Imunoterapia Adotiva , Microambiente Tumoral
11.
Artigo em Inglês | MEDLINE | ID: mdl-37691225

RESUMO

Background - Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently. Objective - This review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future. Methods - Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years. Results - We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nano-formulations. Conclusion - Nano-formulation is found to be more effective in the treatment of breast cancer.

12.
Food Funct ; 14(18): 8101-8128, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37650738

RESUMO

The utilization of plant-derived supplements for disease prevention and treatment has long been recognized because of their remarkable potential. Ananas comosus, commonly known as pineapple, produces a group of enzymes called bromelain, which contains sulfhydryl moieties. Recent studies have shown that bromelain exhibits a wide range of activities, including anti-inflammatory, anti-diabetic, anti-cancer, and anti-rheumatic properties. These properties make bromelain a promising drug candidate for the treatment of various diseases. The anti-inflammatory activity of bromelain has been shown to be useful in treating inflammatory conditions such as osteoarthritis, rheumatoid arthritis, and asthma, whereas the anti-cancer activity of bromelain is via induction of apoptosis, inhibition of angiogenesis, and enhancement of the body's immune response. The anti-diabetic property of bromelain is owing to the improvement in glucose metabolism and reduction in insulin resistance. The therapeutic potential of bromelain has been investigated in numerous preclinical and clinical studies and a number of patents have been granted to date. Various formulations and delivery systems are being developed in order to improve the efficacy and safety of this molecule, including the microencapsulated form to treat oral inflammatory conditions and liposomal formulations to treat cancer. The development of novel drug delivery systems and formulations has further ameliorated the therapeutic potential of bromelain by improving its bioavailability and stability, while reducing the side effects. This review intends to discuss various properties and therapeutic applications of bromelain, along with its possible mechanism of action in treating various diseases. Recent patents and clinical trials concerning bromelain have also been covered.


Assuntos
Artrite Reumatoide , Asma , Humanos , Bromelaínas/farmacologia , Bromelaínas/uso terapêutico , Apoptose , Disponibilidade Biológica
13.
Res Sq ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503215

RESUMO

Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to access of toxicity. ONC201 targets DR5 to induce apoptosis in several types of cancers and has an excellent safety profile. ONC201 is also a dual PI3K/AKT and MEK pathways inhibitor. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable, which can be stabilized by prodrug approach. Here, we used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. We evaluated the efficacy of L_GEM and ONC201 in PanCan cells, and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. ONC201, in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade, to overcome chemoresistance, and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.

14.
Recent Adv Food Nutr Agric ; 14(2): 107-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37218195

RESUMO

BACKGROUND: Ananas comosus L. (family Bromeliaceae) is a plant innate to South America and has been cultivated in various world regions. The plant parts have traditionally been used to treat various ailments, like cancer, diabetes mellitus, bacterial infection, Covid-19 infection, inflammation, arthritis, asthma, malaria, cardiovascular disease, and burn, as debridement agents. The pineapple contains nutrients, including vitamin C, iron, potassium, and protein. It also contains flavonoids, carotenoids, tannins, polyphenols, and alkaloids. METHODS: An extensive literature search was conducted on Ananas comosus using three scientific databases: PubMed, Scopus, and Web of Science. The keywords in this paper were combined to form a search strategy. Ananas comosus and pineapple were the main criteria for judging abstracts, titles, and keywords. In the full text of the paper, the secondary judgment criteria included mentioning "therapeutic potential" or "pharmacological activities". Among the 250 references in the compiled bibliography, there were original articles, books, and web addresses dating back to 2001 to 2023. A review of articles was conducted after abstracts and titles were screened, and 61 duplicate articles were deleted. In this paper, information is provided on the therapeutic potential and pharmacological actions of Ananas comosus and its bioactive compounds. RESULTS: In this review, the therapeutic potential of A. comosus has been detailed. The current review intends to provide an updated comprehensive overview of the versatile plant's use and its clinical trials. CONCLUSION: The plant has gained enormous attention and increasing consideration for treating various diseases. The therapeutic potential of pineapple, its compound, extracts, and their mode of action are discussed briefly. Also, clinical trials are emphasized, which are in great demand and need further in-depth investigation in the future.


Assuntos
Ananas , COVID-19 , Taninos/metabolismo , Ácido Ascórbico/metabolismo , Extratos Vegetais/farmacologia
15.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37111274

RESUMO

By exploiting the ample biological potential of 1,3,4-oxadiazole/thiadiazole ring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. Various substituted azetidin-2-one derivatives have been identified as immunostimulating and antimicrobial, as well as their antioxidant activity. 2-amino 1,3,4 oxadiazole/thiadiazole conjugates were synthesized by mixing semi/thio carbazides and sodium acetate with water and stirring well, followed by adding aldehydes in methanol at room temperature. Acetate (glacial) was used as the catalyst to produce Schiff's bases (intermediates) by treating substituted aldehydes with 2-amino 1,3,4 oxadiazole/thiadiazole(s). Using the mixture of triethylamine (dropwise) and chloroacetylchloride with vigorous stirring, 4-substitutedphenyl-1,3,4-oxadiazol/Thiadiazol-2-yl)-4-(4-substitutedphenyl) azetidin-2-one derivatives were prepared. The newly synthesized conjugates were evaluated for their anticancer potential using MCF-7 cell lines. Amoxicillin and fluconazole were used as reference drugs to determine their antimicrobial activity. Synthesized derivatives were evaluated for their antioxidant properties using 2-diphenyl-1-picrylhydrazyl (DPPH). In vitro cytotoxicity screening (MTTS assay) revealed that derivatives AZ-5, 9, 10, 14 and 19 demonstrated high efficacy with the percentage of inhibition at different concentration ranges (0.1 µM, 0.5 µM, 1 µM, 2 µM) of 89% to 94% µM as compared to doxorubicin as standard drug. The antimicrobial study indicated that compounds AZ-10, 19, and AZ-20 were found to have significant antimicrobial potential with MIC ranges of 3.34 µM to 3.71 µM in comparison to reference drugs having 4.29 µM to 5.10 µM. Based on antioxidant screening, most of the synthetic derivatives showed greater stability and effectiveness than the standard drug. According to the antioxidant screening, compounds AZ-5 and AZ-15 (IC50 = 45.02 µg/mL and 42.88 µg/mL, respectively) showed the greatest potency, as compared to ascorbic acid (IC50 = 78.63 µg/mL). Structure-activity relationship (SAR) studies of synthesized novel derivatives revealed that para-substituted halogen and nitro derivatives have remarkable potential against MCF-7 cancer cell lines and different microbial strains. Current evidence indicates that the synthesized derivatives may be promising candidates for use in the prevention and treatment of these infections. These synthesized compounds require further mechanism-based research to understand how they interact with the cells.

16.
Biomaterials ; 295: 122049, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36827892

RESUMO

Alcohol-associated liver disease (ALD) and its complications are significant health problems worldwide. Several pathways in ALD are influenced by alcohol that drives inflammation, fatty acid metabolism, and fibrosis. Although miR-96 has become a key regulator in several liver diseases, its function in ALD remains unclear. In contrast, sonic hedgehog (SHH) signaling has a well-defined role in liver disease through influencing the activation of hepatic stellate cells (HSCs) and the inducement of liver fibrosis. In this study, we investigated the expression patterns of miR-96 and Hh molecules in mouse and human liver samples. We showed that miR-96 and Shh were upregulated in ethanol-fed mice. Furthermore, alcoholic hepatitis (AH) patient specimens also showed upregulated FOXO3a, TGF-ß1, SHH, and GLI2 proteins. We then examined the effects of Hh inhibitor MDB5 and anti-miR-96 on inflammatory and extracellular matrix (ECM)-related genes. We identified FOXO3 and SMAD7 as direct target genes of miR-96. Inhibition of miR-96 decreased the expression of these genes in vitro in AML12 cells, HSC-T6 cells, and in vivo in ALD mice. Furthermore, MDB5 decreased HSCs activation and the expression of ECM-related genes, such as Gli1, Tgf-ß1, and collagen. Lipid nanoparticles (LNPs) loaded with the combination of MDB5, and anti-miR-96 ameliorated ALD in mice. Our study demonstrated that this combination therapy could serve as a new therapeutic target for ALD.


Assuntos
MicroRNAs , Fator de Crescimento Transformador beta1 , Animais , Humanos , Camundongos , Antagomirs/farmacologia , Etanol/efeitos adversos , Proteínas Hedgehog/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
17.
AMB Express ; 13(1): 22, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828987

RESUMO

L-asparaginase (L-ASNase) from microbial sources is a commercially vital enzyme to treat acute lymphoblastic leukemia. However, the side effects associated with the commercial formulations of L-ASNases intrigued to explore for efficient and desired pharmacological enzymatic features. Here, we report the biochemical and cytotoxic evaluation of periplasmic L-ASNase of Pseudomonas sp. PCH199 isolated from the soil of Betula utilis, the Himalayan birch. L-ASNase production from wild-type PCH199 was enhanced by 2.2-fold using the Response Surface Methodology (RSM). Increased production of periplasmic L-ASNase was obtained using an optimized osmotic shock method followed by its purification. The purified L-ASNase was a monomer of 37.0 kDa with optimum activity at pH 8.5 and 60 ℃. It also showed thermostability retaining 100.0% (200 min) and 90.0% (70 min) of the activity at 37 and 50 ℃, respectively. The Km and Vmax values of the purified enzyme were 0.164 ± 0.009 mM and 54.78 ± 0.4 U/mg, respectively. L-ASNase was cytotoxic to the K562 blood cancer cell line (IC50 value 0.309 U/mL) within 24 h resulting in apoptotic nuclear morphological changes as examined by DAPI staining. Therefore, the dynamic functionality in a wide range of pH and temperature and stability of PCH199 L-ASNase at 37 ℃ with cytotoxic potential proves to be pharmaceutically important for therapeutic application.

18.
Curr Drug Metab ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627789

RESUMO

Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.

19.
J Control Release ; 354: 80-90, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599397

RESUMO

Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 µM) compared to SF2523 (IC50 12.6 µM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Camundongos , Animais , Fatores de Transcrição , Proteínas Nucleares , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Hedgehog , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , Proteínas de Ciclo Celular
20.
J Control Release ; 350: 668-687, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36057395

RESUMO

Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.


Assuntos
Células Endoteliais , Nanopartículas , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Nanomedicina , Nanopartículas/química , Preparações Farmacêuticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA