Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 179: 216-233, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489980

RESUMO

Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species-mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green-biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Fenóis , Criança , Humanos , Poluentes Ambientais/análise , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Disruptores Endócrinos/análise , Compostos Benzidrílicos , Plantas/metabolismo
2.
Bioresour Technol ; 344(Pt A): 126220, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715343

RESUMO

Hydrogen-nanobubble water was proposed to enhance methane production by anaerobic digestion (AD) with corn straw. The effects of H2-nanobubble water (H2-NBW) amounts (0%, 20%, 40%, 60%, 80%, and 100%) on methane production characteristics of corn straw were explored. The results showed that the methane yields were increased by 11.54%∼25.29% compared with the control group(CK), and the maximum cumulative methane production reached to 254.36 mL·g-VS-1 when the H2-NBW addition was of 60%. Interestingly, the maximum methane concentration increased by 4.37% compared with CK. H2-NBW addition can destroy the cellulose structure of corn straw, reduce the crystallinity of cellulose, and promote the hydrolysis. The degradation rate of cellulose and hemicellulose were increased by 20%∼33% and 13% ∼25.7% respectively, and the removal rate of TS and VS were increased by 6.82%-27.93% and 8.52%-21.47%, respectively. The modified Gompertz equation fitted the cumulative methane production curves very well, with high correlation coefficients (R2 > 0.992).


Assuntos
Hidrogênio , Zea mays , Anaerobiose , Biocombustíveis , Metano , Água
3.
Bioresour Technol ; 346: 126409, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838972

RESUMO

Spent tea leaves (STL) are generated after the extraction of liquor from processed tea leaves and are regarded as an underutilized waste. STL are rich in essential amino acids, ω-6 and ω-3 fatty acids, alkaloids (theobromine and caffeine), polyphenols (catechin, theaflavins and rutin) and minerals (Ca, P, K, Mg, Mn) that could be utilized for the production of industrially important products. Vermicomposting, anaerobic digestion, silage preparation and fermentation are currently used as low cost methods for the bioconversion of STL to a usable form. Structural, morphological and chemical modification of STL after suitable bioconversion enables its application in the development of biopolymers, biofuels, catechin derivatives, biochar, absorbents for dye, and for removal of Cd, Hg, Cr(IV), As(V) and aspirin. This review discusses the composition, characterization, bioconversion and value added product generation from STL while highlighting prospective applications of STL in developing battery electrodes, nanocatalysts, insulation materials and edible bioactive peptides.


Assuntos
Folhas de Planta , Chá , Biocombustíveis , Fermentação , Polifenóis
4.
Bioresour Technol ; 346: 126513, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890818

RESUMO

Advances in microbial enzyme technology offer a significant opportunity for developing low-energy bioconversion solutions for industrial wastes as inexpensive feedstocks for useful products. In this short communication, two agro-food industrial wastes, chicken feather powder (CFP) and okara, were converted into peptides by a Bacillus licheniformis mutant using solid-state fermentation (SSF). The optimum SSF conditions for okara to CFP ratio, inoculum size, and time were 0.7 (7:10), 15%, and 90 h, respectively, which produced 185.99 mg/g peptides, with 910.12 U/g keratinase activity and 85.03% antioxidant scavenging activity. Compared to okara, CFP with mutant strain showed 11.28% higher keratinase activity and produced higher amounts of peptides (5.51%).


Assuntos
Bacillus licheniformis , Bacillus , Bacillus/genética , Bacillus licheniformis/genética , Fermentação , Resíduos Industriais , Peptídeos
5.
Bioresour Technol ; 337: 125397, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34139563

RESUMO

The present work studied the influence of bacterial agents (B1, B2) and bamboo biochar (BB) on greenhouse gas emissions and bacterial community during the sewage sludge composting. Results showed that compared with CK, the total methane emissions ofC, B1, B1C, B2, and B2C treatments declined by 16.4%, 25.2%, 45.4%, 7.8%, and 44.4%, respectively. The total N2O emissions ofC and B1C treatments declined by 5.1% and 3.7% while B1, B2, and B2C treatments increased the total N2O emissions by 6.7%, 21.6%, and 10.4%, respectively. These results illustrated that the addition of BB is conducive for reducing greenhouse gas emissions while different bacterial agents have various effects. According to pearson correlation analysis, N2O emissions and Acidimicrobiia, Alphaproteobacteria, Gammaproteobacteria, and Tepidiformia have strong negative correlation while positive correlation with Bacilli and Clostridia. Methane emissions have a strong negative correlation with Actinobacteria. CO2 emissions have a strong positive correlation with Bacilli.


Assuntos
Compostagem , Gases de Efeito Estufa , Sasa , Carvão Vegetal , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Esgotos , Solo
6.
Bioresour Technol ; 337: 125368, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34111628

RESUMO

Immersed liquid circulation is assumed to improve solid-state anaerobic digestion (SS-AD) with digestate flow convection on the surface of solid-state bed (SSB), which depends on SSB concentration and circulation rate (CR). In this study, the impact of CR on rice straw SS-AD was investigated within a 30 L pilot digester. Results showed that SSB threshold concentration for efficient biogas conversion was 10%-12% TS, achieving the methane yield of 185.3 mL/g VS. Within the threshold, methane production progress and VFAs release could be enhanced simultaneously by rational CR increasing, but no significant methane yield improvement was observed; above, the rapid and stable biogas generation could be acquired with a competitive methane yield of 174.7 mL/g VS (150% CR). No matter within or above the threshold, efficient lingo-cellulosic degradation was always accompanied by the moderate CR for effective methane generation. SSB was proposed to be above threshold for industrial application.


Assuntos
Metano , Oryza , Anaerobiose , Biocombustíveis , Reatores Biológicos , Ácidos Graxos Voláteis
7.
Bioresour Technol ; 297: 122435, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31780244

RESUMO

This research investigated the influence of biochar (B) and bean dregs (BD) amendments on carbon and nitrogen losses through greenhouse gas (GHG) emissions during pig manure (PM) composting. The treatments included 15% BD, 10% B and 15% BD+10% B (w/w dry basis of PM) amendments in the compost, whereas the CK (control) lacked any additives. The NH4+-N, C/N and germination index (GI) of the end products ensured compost maturity. Compared with the CK, the 15% BD amendment increased the total nitrogen content (TKN) of the final product by 8.05% but also increased NH3 (54.98%) and GHG emissions (40.35%) as well as nitrogen loss (25.62%). Furthermore, the combined treatment of 15% BD+10% B improved the TKN (2.83%) of the end product and controlled NH3 emissions (33.71%), GHG emissions (29.56%) and nitrogen loss (24.26%) while increasing CO2 only with the 15% BD amendment. Therefore, the combination of BD+B was recommended.


Assuntos
Compostagem , Gases de Efeito Estufa , Animais , Suplementos Nutricionais , Esterco , Nitrogênio , Solo , Suínos
8.
Ecotoxicol Environ Saf ; 145: 313-323, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28756252

RESUMO

This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (p< 0.05) significantly reduced the DTPA-extractable Pb 97.33, Cd 68.06 and Cu 91.11% with L+TB, L+CB, L+Z in FX-LC soil and Zn 87.12% respectively, with L+CB into TG-C soil. Consequently, the application of lime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop.


Assuntos
Compostos de Cálcio/química , Chumbo/análise , Óxidos/química , Poluentes do Solo/análise , Zinco/análise , Biomassa , Brassica/química , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Metalurgia , Metais Pesados/análise , Raízes de Plantas/química , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA