Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(1): 337-350, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194362

RESUMO

The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.


Assuntos
Burkholderia , Burkholderia/genética , Escherichia coli/genética , Variações do Número de Cópias de DNA , Peptídeos/genética , Plasmídeos/genética
2.
Proc Natl Acad Sci U S A ; 120(42): e2304668120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812712

RESUMO

Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.


Assuntos
Produtos Biológicos , Burkholderia , Humanos , Burkholderia/genética , Peptídeo Sintases/genética , Lipopeptídeos/química , DNA , Produtos Biológicos/química , Serina/genética , Família Multigênica
3.
Microbiol Resour Announc ; 12(5): e0011123, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37074205

RESUMO

Here, we report the complete genome sequence of Burkholderia sp. strain FERM BP-3421, a bacterium isolated previously from a soil sample in Japan. Strain FERM BP-3421 produces spliceostatins, which are splicing modulatory antitumor agents that advanced to preclinical development. The genome is composed of four circular replicons of 3.90, 3.0, 0.59, and 0.24 Mbp.

4.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36931895

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of secondary metabolites that have garnered scientific attention due to their complex scaffolds with potential roles in medicine, agriculture, and chemical ecology. RiPPs derive from the cleavage of ribosomally synthesized proteins and additional modifications, catalyzed by various enzymes to alter the peptide backbone or side chains. Of these enzymes, cytochromes P450 (P450s) are a superfamily of heme-thiolate proteins involved in many metabolic pathways, including RiPP biosyntheses. In this review, we focus our discussion on P450 involved in RiPP pathways and the unique chemical transformations they mediate. Previous studies have revealed a wealth of P450s distributed across all domains of life. While the number of characterized P450s involved in RiPP biosyntheses is relatively small, they catalyze various enzymatic reactions such as C-C or C-N bond formation. Formation of some RiPPs is catalyzed by more than one P450, enabling structural diversity. With the continuous improvement of the bioinformatic tools for RiPP prediction and advancement in synthetic biology techniques, it is expected that further cytochrome P450-mediated RiPP biosynthetic pathways will be discovered. SUMMARY: The presence of genes encoding P450s in gene clusters for ribosomally synthesized and post-translationally modified peptides expand structural and functional diversity of these secondary metabolites, and here, we review the current state of this knowledge.


Assuntos
Produtos Biológicos , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , Processamento de Proteína Pós-Traducional , Bactérias/genética , Bactérias/metabolismo , Peptídeos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Produtos Biológicos/química
5.
Angew Chem Int Ed Engl ; 60(29): 15891-15898, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33961724

RESUMO

Although swarming motility and biofilms are opposed collective behaviors, both contribute to bacterial survival and host colonization. Pseudovibrio bacteria have attracted attention because they are part of the microbiome of healthy marine sponges. Two-thirds of Pseudovibrio genomes contain a member of a nonribosomal peptide synthetase-polyketide synthase gene cluster family, which is also found sporadically in Pseudomonas pathogens of insects and plants. After developing reverse genetics for Pseudovibrio, we isolated heptapeptides with an ureido linkage and related nonadepsipeptides we termed pseudovibriamides A and B, respectively. A combination of genetics and imaging mass spectrometry experiments showed heptapetides were excreted, promoting motility and reducing biofilm formation. In contrast to lipopeptides widely known to affect motility/biofilms, pseudovibriamides are not surfactants. Our results expand current knowledge on metabolites mediating bacterial collective behavior.


Assuntos
Peptídeos/metabolismo , Poríferos/genética , Poríferos/metabolismo , Animais , Família Multigênica/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Simbiose
6.
ACS Synth Biol ; 9(2): 241-248, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31913601

RESUMO

Burkholderia bacteria are an emerging source of natural products with applications in agriculture and medicine. The heterologous expression of biosynthetic gene clusters can streamline natural product discovery; however, production yields with the commonly used Escherichia coli host are usually low. Following the current paradigm that one host does not fit all, we aim to develop a Burkholderia host to ultimately tap into the biosynthetic potential of Burkholderia genomes, which can contain up to 27 biosynthetic gene clusters per genome. Because a close phylogenetic relationship is expected to improve the odds of success due to compatible gene expression and precursor supply, we tested Burkholderia sp. FERM BP-3421, a nonpathogenic isolate previously used to produce natural products at industrial scales. We show here that FERM BP-3421 can produce the model lasso peptide capistruin in yields that are at least 65 times and up to 580 times higher than the previously used E. coli host.


Assuntos
Burkholderia/metabolismo , Peptídeos/metabolismo , Produtos Biológicos/metabolismo , Cromatografia Líquida de Alta Pressão , Família Multigênica , Peptídeos/análise , Peptídeos/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
7.
mSystems ; 4(3)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31120026

RESUMO

The biosynthetic talent of microorganisms has been harnessed for drug discovery for almost a century. Microbial metabolites not only account for the majority of antibiotics available today, but have also led to anticancer, immunosuppressant, and cholesterol-lowering drugs. Yet, inherent challenges of natural products-including inadequate supply and difficulties with structure diversification-contributed to their deprioritization as a source of pharmaceuticals. In recent years, advances in genome sequencing and synthetic biology spurred a renewed interest in natural products. Bacterial genomes encode an abundance of natural products awaiting discovery. Synthetic biology can facilitate not only discovery and improvements in supply, but also structure diversification. This perspective highlights prior accomplishments in the field of synthetic biology and natural products by the scientific community at large, including research from our laboratory. We also provide our opinion as to where we need to go to continue advancing the field.

8.
Methods Enzymol ; 604: 367-388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29779659

RESUMO

S-adenosyl-l-methionine (SAM) is universal in biology, serving as the second most common cofactor in a variety of enzymatic reactions. One of the main roles of SAM is the methylation of nucleic acids, proteins, and metabolites. Methylation often imparts regulatory control to DNA and proteins, and leads to an increase in the activity of specialized metabolites such as those developed as pharmaceuticals. There has been increased interest in using SAM analogs in methyltransferase-catalyzed modification of biomolecules. However, SAM and its analogs are expensive and unstable, degrading rapidly under physiological conditions. Thus, the availability of methods to prepare SAM in situ is desirable. In addition, synthetic methods to generate SAM analogs suffer from low yields and poor diastereoselectivity. The chlorinase SalL from the marine bacterium Salinispora tropica catalyzes the reversible, nucleophilic attack of chloride at the C5' ribosyl carbon of SAM leading to the formation of 5'-chloro-5'-deoxyadenosine (ClDA) with concomitant displacement of l-methionine. It has been demonstrated that the in vitro equilibrium of the SalL-catalyzed reaction favors the synthesis of SAM. In this chapter, we describe methods for the preparation of SalL, and the chemoenzymatic synthesis of SAM and SAM analogs from ClDA and l-methionine congeners using SalL. In addition, we describe procedures for the in situ chemoenzymatic synthesis of SAM coupled to DNA, peptide, and metabolite methylation, and to the incorporation of isotopes into alkylated products.


Assuntos
Proteínas de Bactérias/metabolismo , Bioquímica/métodos , S-Adenosilmetionina/síntese química , Proteínas de Bactérias/genética , Catálise , Cladribina/metabolismo , Enzimas/química , Enzimas/metabolismo , Metionina/metabolismo , Micromonosporaceae/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA