Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nanomedicine (Lond) ; : 1-13, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073842

RESUMO

Background: Development of an inhalable nanoformulation of dacomitinib (DMB) encapsulated in poly-(lactic-co-glycolic acid) nanoparticles (NPs) to improve solubility, facilitate direct lung delivery and overcome the systemic adverse effects. Methods: DMB-loaded poly-(lactic-co-glycolic acid) NPs were prepared using solvent evaporation and characterized for particle size, polydispersity index and zeta-potential. The NPs were evaluated for in vitro drug release, aerosolization performance and in vitro efficacy studies. Results: The NPs showed excellent particle characteristics and displayed a cumulative release of ∼40% in 5 days. The NPs demonstrated a mass median aerodynamic diameter of ∼3 µm and fine particle fraction of ∼80%. Further, in vitro cell culture studies showed improved cytotoxic potential of DMB-loaded NPs compared with free drug. Conclusion: The study underscores the potential of DMB-loaded NPs as a viable approach for non-small cell lung cancer treatment.

2.
Int J Pharm ; 653: 123920, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387819

RESUMO

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M.tb) and is the second leading cause of death from an infectious disease globally. The disease mainly affects the lungs and forms granulomatous lesions that encapsulate the bacteria, making treating TB challenging. The current treatment includes oral administration of bedaquiline (BDQ) and pretomanid (PTD); however, patients suffer from severe systemic toxicities, low lung drug concentration, and non-adherence. In this study, we developed BDQ-PTD loaded nanoparticles as inhalable dry powders for pulmonary TB treatment using a Quality-by-Design (QbD) approach. The BDQ-PTD combination showed an additive/synergistic effect for M.tb inhibition in vitro, and the optimized drug ratio (1:4) was successfully loaded into polymeric nanoparticles (PLGA NPs). The QbD approach was implemented by identifying the quality target product profile (QTPPs), critical quality attributes (CQAs), and critical process parameters (CPPs) to develop efficient design space for dry powder preparation using spray drying. The three-factorial and three-level Box-Behnken Design was used to assess the effect of process parameters (CPPs) on product quality (CQAs). The Design of Experiments (DoE) analysis showed different regression models for product quality responses and helped optimize process parameters to meet QTPPs. The optimized dry powder showed excellent yield (72 ± 2 % w/w), high drug (BDQ-PTD) loading, low moisture content (<1% w/w), and spherical morphology. Further, aerosolization performance revealed the suitability of powder for deposition in the respiratory airways of the lungs (MMAD 2.4 µm and FPF > 75 %). In conclusion, the QbD approach helped optimize process parameters and develop dry powder with a suitable quality profile for inhalation delivery in TB patients.


Assuntos
Diarilquinolinas , Nanopartículas , Nitroimidazóis , Tuberculose , Humanos , Pós , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis
3.
Int J Pharm ; 634: 122641, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36709012

RESUMO

Nisin ZP is an antimicrobial peptide (AMP) produced by the bacterium Lactococcus lactis, and we have previously demonstrated anticancer activity in NSCLC (A549) cells. In this study, we formulated a nisin ZP dry powder (NZSD) using a spray dryer to facilitate inhaled delivery for the treatment of NSCLC. Nisin ZP was spray-dried with mannitol, l-leucine, and trehalose in a ratio of 75:15:10 using Büchi mini spray-dryer B-290 in different drug loadings (10, 20, and 30% w/w). NZSD powder revealed a good powder yield of >55% w/w with ≤3 % w/w moisture content and high nisin ZP drug loading for all the peptide ratios. The NZSD powder particles were irregularly shaped with corrugated morphology. The presence of an endothermic peak in DSC thermograms and attenuated crystalline peaks in PXRD diffractograms confirmed the semi-crystalline powder nature of NZSD. The anticancer activity of nisin ZP was maintained after fabricating it into NZSD powder and showed a similar inhibitory concentration to free nisin ZP. Stability studies indicated that NZSD powders were stable for three months at 4 and 25 ℃ with more than 90% drug content and semi-crystalline nature, as confirmed by DSC and PXRD. Aerosolization studies performed using NGI indicated an aerodynamic diameter (MMAD) within the desired range (1-5 µm) and a high fine particle fraction (FPF > 75%) for all peptide ratios, suggesting powder deposition in the lung's respiratory airways. In conclusion, a dry powder of nisin ZP was formulated using a spray dryer with enhanced storage stability and suitable for inhaled delivery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nisina , Humanos , Administração por Inalação , Peptídeos Antimicrobianos , Pós/química , Aerossóis e Gotículas Respiratórios , Pulmão , Tamanho da Partícula , Inaladores de Pó Seco
4.
Biochimie ; 201: 7-17, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764196

RESUMO

Non-small cell lung cancer (NSCLC) is a major cause of global cancer mortalities and accounts for approximately 80-85% of reported lung cancer cases. Conventional chemotherapeutics show limited application because of poor tumor selectivity and acquired drug resistance. Antimicrobial peptides (AMPs) have gained much attention as potential anticancer therapeutics owing to their high potency and high target selectivity and specificity with limited scope for drug resistance. In this study, D-LAK (D-LAK-120A), a cationic AMP, was evaluated for its anticancer efficacy in various NSCLC cell lines. D-LAK peptide demonstrated enhanced cytotoxicity in A549, H358, H1975, and HCC827 cell lines with inhibitory concentrations between 4.0 and 5.5 µM. An increase in the lactate dehydrogenase (LDH) levels and propidium iodide (PI) uptake across compromised membrane suggested membranolytic activity as an inhibition pathway. In addition, we found D-LAK induced lung cancer cell apoptosis and arrested cells in the S phase (DNA synthesis) of cell cycle. Moreover, a decreased mitochondrial membrane potential and elevated ROS levels were observed after D-LAK treatment, suggesting induction of mitochondria-mediated apoptosis. Additionally, D-LAK inhibited single cell proliferation and cancer cell migration in vitro. The tumor reduction observed in the 3D spheroid assay further suggests the potential use of D-LAK as an anticancer agent for NSCLC treatment. Our results postulate innovative insights on the anticancer mechanism of D-LAK, which may contribute to its further development into preclinical studies and a potential therapeutic.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Peptídeos Antimicrobianos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , DNA , Lactato Desidrogenases , Neoplasias Pulmonares/genética , Propídio/farmacologia , Propídio/uso terapêutico , Espécies Reativas de Oxigênio
5.
Pharm Res ; 39(11): 2859-2870, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35246758

RESUMO

Lung cancer is the leading cause of cancer deaths globally with most of the reported cases (> 85%) associated with non-small cell lung cancer (NSCLC). Current therapies have enhanced the overall survival rate of patients but treatment-related adverse effects and increase in drug-resistance limit the success of these treatment options. Antimicrobial peptides (AMPs) have gained interest as anticancer agents as they selectively target cancer cells and decrease the possibility of resistance. Nisin ZP is a polycyclic antimicrobial peptide produced by the Gram-positive bacterium, Lactococcus lactis and is commonly used as a food preservative. Nisin ZP has recently demonstrated anticancer activity in melanoma, head and neck squamous cell carcinoma, hepatic, colon, and blood cancer. In this study, we evaluated the anticancer potential of nisin ZP and assessed the underlying mechanisms in NSCLC cells. The results revealed that nisin ZP induced selective toxicity in cancer (A549 and H1299) cells compared to healthy (HEK293) cells after 48 h of treatment. Nisin ZP exposure induced apoptosis and cell cycle arrest (G0/G1 phase) in NSCLC cells irrespective of tumor protein p53 expression. The cancer cell proliferation was inhibited via non-membranolytic pathways by mitochondrial membrane depolarization and elevation in reactive oxygen species (ROS) generation. Furthermore, nisin ZP decreased cancer cells' clonal expansion and migration, demonstrating potential use against highly metastatic NSCLC. The 3D spheroid growth and cell viability of the A549 cells were significantly inhibited by nisin ZP compared to control. Overall, the results suggest an excellent antitumor potential in vitro and, thus, can further be developed as a novel therapeutic for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nisina , Humanos , Peptídeos Antimicrobianos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Neoplasias Pulmonares/patologia , Nisina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Drug Deliv Transl Res ; 12(10): 2474-2487, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34816394

RESUMO

Osimertinib (OB) is a third-generation irreversible tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR), overexpressed in non-small cell lung cancer. Systemic administration of drug often results in poor drug levels at the primary tumor in the lungs and is associated with systemic side effects. In this study, we developed inhalable OB liposomes that can locally accumulate at the tumor site thereby limiting systemic toxicity. OB was loaded into liposomes via active and passive loading methods. The OB active liposomes achieved a higher encapsulation (78%) compared to passive liposomes (25%). The liposomes (passive and active) exhibited excellent aerosolization performance with an aerodynamic diameter of 4 µm and fine particle fraction of 82%. In H1975 cells, OB active and passive liposomes reduced IC50 by 2.2 and 1.2-fold, respectively, compared to free drug. As the OB active liposomes demonstrated higher cytotoxicity compared to OB passive liposomes, they were further investigated for in vitro anti-cancer activity. The OB active liposomes inhibited tumor cell migration and colonization as determined by the scratch assay and clonogenic assay, respectively. Furthermore, the 3D spheroid studies showed that the liposomes were successful in inhibiting tumor growth. These results highlight the potential of OB liposomes to suppress lung cancer. Owing to these attributes, the inhalable OB liposomes can potentially promote better therapeutic outcomes with limited systemic toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Indóis , Lipossomos/uso terapêutico , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pirimidinas
7.
Int J Pharm ; 607: 121046, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34450225

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths globally. Treatment-related adverse effects and development of drug resistance limit the available treatment options for most patients. Therefore, newer drug candidates and drug delivery systems that have limited adverse effects with significant anti-cancer efficacy are needed. For NSCLC treatment, delivering drugs via inhalation is highly beneficial as it requires lower doses and limits systemic toxicity. Bedaquiline (BQ), an FDA-approved anti-tuberculosis drug has previously shown excellent anti-cancer efficacy. However, poor aqueous solubility limits its delivery via the lungs. In this project, we developed inhalable BQ-loaded cubosome (BQLC) nanocarriers against NSCLC. The BQLC were prepared using a solvent evaporation technique with the cubosomal nanocarriers exhibiting a particle size of 150.2 ± 5.1 nm, zeta potential of (+) 35.4 ± 2.3 mV, and encapsulation efficiency of 51.85 ± 4.83%. The solid-state characterization (DSC and XRD) confirmed drug encapsulation and in an amorphous form within the cubosomes. The BQLC nanocarriers showed excellent aerodynamic properties after nebulization (MMAD of 4.21 ± 0.53 µm and FPF > 75%). The BQLC displayed enhanced cellular internalization and cytotoxicity with a ~ 3-fold reduction in IC50 compared to free BQ in NSCLC (A549) cells, after 48 h treatment. The BQLC suppressed cell proliferation via apoptotic pathway, further inhibited colony formation, and cancer metastasis in vitro. Additionally, 3D-tumor simulation studies established the anti-cancer efficacy of cubosomal nanocarriers as compared to free BQ. This is the first study exploring the potential of cubosomes as inhalation therapy of repurposed drug, BQ and the results suggest that BQLC may be a promising NSCLC therapy due to excellent aerosolization performance and enhanced anti-cancer activity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Diarilquinolinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula
8.
Viruses ; 13(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200586

RESUMO

Three prophylactic vaccines are approved to protect against HPV infections. These vaccines are highly immunogenic. The most recent HPV vaccine, Gardasil-9, protects against HPV types associated with ~90% of cervical cancer (worldwide). Thus, ~10% of HPV-associated cancers are not protected by Gardasil-9. Although this is not a large percentage overall, the HPV types associated with 10% of cervical cancer not protected by the current vaccine are significantly important, especially in HIV/AIDS patients who are infected with multiple HPV types. To broaden the spectrum of protection against HPV infections, we developed mixed MS2-L2 VLPs (MS2-31L2/16L2 VLPs and MS2-consL2 (69-86) VLPs) in a previous study. Immunization with the VLPs neutralized/protected mice against infection with eleven high-risk HPV types associated with ~95% of cervical cancer and against one low-risk HPV type associated with ~36% of genital warts & up to 32% of recurrent respiratory papillomatosis. Here, we report that the mixed MS2-L2 VLPs can protect mice from three additional HPV types: HPV51, which is associated with ~0.8% of cervical cancer; HPV6, which is associated with up to 60% of genital warts; HPV5, which is associated with skin cancers in patients with epidermodysplasia verruciformis (EV). Overall, mixed MS2-L2 VLPs can protect against twelve HPV types associated with ~95.8% of cervical cancers and against two HPV types associated with ~90% of genital warts and >90% recurrent respiratory papillomatosis. Additionally, the VLPs protect against one of two HPV types associated with ~90% of HPV-associated skin cancers in patients with EV. More importantly, we observed that mixed MS2-L2 VLPs elicit protective antibodies that last over 9 months. Furthermore, a spray-freeze-dried formulation of the VLPs is stable, immunogenic, and protective at room temperature and 37 °C.


Assuntos
Anticorpos Antivirais/sangue , Bacteriófagos/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Condiloma Acuminado/prevenção & controle , Proteção Cruzada/imunologia , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae/classificação , Papillomaviridae/patogenicidade , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
9.
Nanomedicine (Lond) ; 16(14): 1187-1202, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33982600

RESUMO

Aim: To formulate an aerosolized nanoliposomal carrier for remdesivir (AL-Rem) against coronavirus disease 2019. Methods: AL-Rem was prepared using modified hydration technique. Cytotoxicity in lung adenocarcinoma cells, stability and aerodynamic characteristics of developed liposomes were evaluated. Results: AL-Rem showed high encapsulation efficiency of 99.79%, with hydrodynamic diameter of 71.46 ± 1.35 nm and surface charge of -32 mV. AL-Rem demonstrated minimal cytotoxicity in A549 cells and retained monolayer integrity of Calu-3 cells. AL-Rem showed sustained release, with complete drug release obtained within 50 h in simulated lung fluid. Long-term stability indicated >90% drug recovery at 4°C. Desirable aerosol performance, with mass median aerodynamic diameter of 4.56 ± 0.55 and fine particle fraction of 74.40 ± 2.96%, confirmed successful nebulization of AL-Rem. Conclusion: AL-Rem represents an effective alternative for coronavirus disease 2019 treatment.


Lay abstract Remdesivir is one of the first drugs approved for the treatment of coronavirus disease 2019. Currently, it is administered via an injection into the bloodstream. This means that the drug circulates around the entire body and only a limited amount reaches the diseased site ­ the lungs. Frequent dosing is therefore required, which needs expert personnel and multiple hospital visits and can result in serious side effects. In this study, the authors developed specialized, nanosized particles containing the drug remdesivir that can be administered directly into the lungs. This could drastically minimize side effects, enhance efficacy and allow easy self-administration at home. The results of the study are promising but require additional investigation.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , Portadores de Fármacos , Células A549 , Monofosfato de Adenosina/administração & dosagem , Administração por Inalação , Aerossóis , Alanina/administração & dosagem , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Lipossomos , Nanopartículas , Tamanho da Partícula
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946414

RESUMO

There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of ß-cyclodextrin (SBE-ß-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-ß-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-ß-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diarilquinolinas/administração & dosagem , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , beta-Ciclodextrinas/química , Células A549 , Administração por Inalação , Antibióticos Antineoplásicos/farmacologia , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Linhagem Celular Tumoral , Diarilquinolinas/farmacologia , Reposicionamento de Medicamentos , Humanos , Modelos Moleculares
11.
Drug Deliv Transl Res ; 11(3): 927-943, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32557351

RESUMO

Afatinib (AFA) is a potent aniline-quinazoline derivative, approved by the Food and Drug Administration (FDA) in 2013, as a first-line treatment for metastatic non-small cell lung cancer (NSCLC). However, its clinical application is highly limited by its poor solubility, and consequently low bioavailability. We hypothesize that loading of AFA into biodegradable PLGA nanoparticles for localized inhalational drug delivery will be instrumental in improving therapeutic outcomes in NSCLC patients. Formulated AFA nanoparticles (AFA-NP) were evaluated for physicochemical properties (particle size: 180.2 ± 15.6 nm, zeta potential: - 23.1 ± 0.2 mV, % entrapment efficiency: 34.4 ± 2.3%), formulation stability, in-vitro aerosol deposition behavior, and anticancer efficacy. Stability studies revealed the physicochemical stability of AFA-NP. Moreover, AFA-NP exhibited excellent inhalable properties (mass median aerodynamic diameter (MMAD): 4.7 ± 0.1 µm; fine particle fraction (FPF): 77.8 ± 4.3%), indicating efficient particle deposition in deep lung regions. With respect to in-vitro drug release, AFA-NP showed sustained drug release with cumulative release of 56.8 ± 6.4% after 48 h. Cytotoxic studies revealed that encapsulation of AFA into PLGA nanoparticles significantly enhanced its cytotoxic potential in KRAS-mutated NSCLC cell lines (A549, H460). Cellular uptake studies revealed enhanced internalization of coumarin-loaded nanoparticles compared to plain coumarin in A549. In addition, 3D tumor spheroid studies demonstrated superior efficacy of AFA-NP in tumor penetration and growth inhibition. To conclude, we have established in-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy, which will be of great significance when designing preclinical and clinical studies. Graphical abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Afatinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Nanopartículas/química , Tamanho da Partícula
12.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066447

RESUMO

Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.


Assuntos
Bactérias/patogenicidade , Terapia Biológica/métodos , Neoplasias/terapia , Animais , Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Humanos , Neoplasias/microbiologia
13.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902275

RESUMO

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Pirazóis/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Humanos , Camundongos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mater Sci Eng C Mater Biol Appl ; 115: 111139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600728

RESUMO

New drug and dosage form development faces significant challenges, especially in oncology, due to longer development cycle and associated scale-up complexities. Repurposing of existing drugs with potential anti-cancer activity into new therapeutic regimens provides a feasible alternative. In this project, amodiaquine (AQ), an anti-malarial drug, has been explored for its anti-cancer efficacy through formulating inhalable nanoparticulate systems using high-pressure homogenization (HPH) with scale-up feasibility and high reproducibility. A 32 multifactorial design was employed to better understand critical processes (probe homogenization speed while formulating coarse emulsion) and formulation parameters (concentration of cationic polymer in external aqueous phase) so as to ensure product quality with improved anticancer efficacy in non-small cell lung cancer (NSCLC). Optimized AQ loaded nanoparticles (AQ NP) were evaluated for physicochemical properties, stability profile, in-vitro aerosol deposition behavior, cytotoxic potential against NSCLC cells in-vitro and in 3D simulated tumor spheroid model. The highest probe homogenization speed (25,000 rpm) resulted in lower particle size. Incorporation of cationic polymer, polyethylenimine (0.5% w/v) resulted in high drug loading efficiencies at optimal drug quantity of 5 mg. Formulated nanoparticles (liquid state) exhibited an aerodynamic diameter of 4.7 ± 0.1 µm and fine particle fraction of 81.0 ± 9.1%, indicating drug deposition in the respirable airways. Cytotoxicity studies in different NSCLC cell lines revealed significant reduction in IC50 values with AQ-loaded nanoparticles compared to plain drug, along with significant cell migration inhibition (scratch assay) and reduced % colony growth (clonogenic assay) in A549 cells with AQ NP. Moreover, 3D simulated spheroid studies revealed efficacy of nanoparticles in penetration to tumor core, and growth inhibition. AQ's autophagy inhibition ability significantly increased (increased LC3B-II levels) with nanoparticle encapsulation, along with moderate improvement in apoptosis induction (Caspase-3 levels). No impact was observed on HUVEC angiogenesis suggesting alternative anticancer mechanisms. To conclude, amodiaquine can be a promising candidate for repurposing to treat NSCLC while delivering inhalable nanoparticles developed using a scalable HPH process. Despite the involvement of complex parameters, application of DoE has simplified the process of product and process optimization.


Assuntos
Amodiaquina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Esferoides Celulares/citologia , Células A549 , Administração por Inalação , Amodiaquina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Reposicionamento de Medicamentos , Estabilidade de Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanopartículas , Tamanho da Partícula , Esferoides Celulares/efeitos dos fármacos
15.
Int J Biol Macromol ; 164: 638-650, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693132

RESUMO

Resveratrol (RES), a natural polyphenol in fruits, has shown promising anti-cancer properties. Due to its relative low toxicity which limits the adverse effects observed for conventional chemotherapeutics, RES has been proposed as an alternative. However, the therapeutic applications of RES have been limited due to low water solubility, as well as chemical and physical instability. This study investigated enhancing the anti-cancer activity of RES against non-small-cell-lung-cancer (NSCLC) by complexing with sulfobutylether-ß-cyclodextrin (CD-RES) and loading onto polymeric nanoparticles (NPs). The physicochemical properties of the CD-RES NPs were then characterized. The CD-RES inclusion complex increased the water solubility of RES by ~66-fold. CD-RES NPs demonstrated very good aerosolization potential with a mass median aerodynamic diameter of 2.20 µm. Cell-based studies demonstrated improved therapeutic efficacy of CD-RES NPs compared to RES. This included enhanced cellular uptake, cytotoxicity, and apoptosis, while retaining antioxidant activity. The 3D spheroid study indicated an intensified anti-cancer effect of CD-RES NPs. Altogether, these findings marked CD-RES NPs as a potential inhalable delivery system of RES for the treatment NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Resveratrol/farmacologia , beta-Ciclodextrinas/farmacologia , Células A549 , Administração por Inalação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Células HEK293 , Humanos , Nanopartículas , Tamanho da Partícula , Resveratrol/química , beta-Ciclodextrinas/química
16.
Eur J Pharm Biopharm ; 154: 259-269, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717385

RESUMO

Exosomes are intracellular membrane-based vesicles with diverse compositions that are involved in biological and pathological processes. Since the discovery of exosomes, they have been used as diagnostic biomarkers and as potential drug delivery vehicles based on their size and competence to transfer biological materials to recipient cells. The properties of exosomes such as biocompatibility, preferred tumor homing, adjustable targeting efficiency, and stability make them striking and excellent drug delivery vehicles for use in various diseases and cancer therapy. In this article, we provide a brief overview of the biogenesis, functions, and contents of exosomes along with the separation and characterization techniques. Our major focus is on the recent progress made in application of exosomes as drug delivery systems involving delivery of small molecules, macromolecules, and nucleotides. Further, we discuss the challenges faced when using exosomes as a drug delivery vehicle.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Exossomos , Terapia Genética/métodos , Animais , Química Farmacêutica/tendências , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Exossomos/genética , Exossomos/metabolismo , Terapia Genética/tendências , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
17.
Pharmaceutics ; 12(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121070

RESUMO

Non-small cell lung cancer (NSCLC) is a global disorder, treatment options for which remain limited with resistance development by cancer cells and off-target events being major roadblocks for current therapies. The discovery of new drug molecules remains time-consuming, expensive, and prone to failure in safety/efficacy studies. Drug repurposing (i.e., investigating FDA-approved drug molecules for use against new indications) provides an opportunity to shorten the drug development cycle. In this project, we propose to repurpose pirfenidone (PFD), an anti-fibrotic drug, for NSCLC treatment by encapsulation in a cationic liposomal carrier. Liposomal formulations were optimized and evaluated for their physicochemical properties, in-vitro aerosol deposition behavior, cellular internalization capability, and therapeutic potential against NSCLC cell lines in-vitro and ex-vivo. Anti-cancer activity of PFD-loaded liposomes and molecular mechanistic efficacy was determined through colony formation (1.5- to 2-fold reduction in colony growth compared to PFD treatment in H4006, A549 cell lines, respectively), cell migration, apoptosis and angiogenesis assays. Ex-vivo studies using 3D tumor spheroid models revealed superior efficacy of PFD-loaded liposomes against NSCLC, as compared to plain PFD. Hence, the potential of inhalable liposome-loaded pirfenidone in NSCLC treatment has been established in-vitro and ex-vivo, where further studies are required to determine their efficacy through in vivo preclinical studies followed by clinical studies.

18.
Pharm Res ; 37(3): 67, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166411

RESUMO

PURPOSE: This exploration is aimed at developing sorafenib (SF)-loaded cationically-modified polymeric nanoparticles (NPs) as inhalable carriers for improving the therapeutic efficacy of SF against non-small cell lung cancer (NSCLC). METHODS: The NPs were prepared using a solvent evaporation technique while incorporating cationic agents. The optimized NPs were characterized by various physicochemical parameters and evaluated for their aerosolization properties. Several in-vitro evaluation studies were performed to determine the efficacy of our delivery carriers against NSCLC cells. RESULTS: Optimized nanoparticles exhibited an entrapment efficiency of ~40%, <200 nm particle size and a narrow poly-dispersity index. Cationically-modified nanoparticles exhibited enhanced cellular internalization and cytotoxicity (~5-fold IC50 reduction vs SF) in various lung cancer cell types. The inhalable nanoparticles displayed efficient aerodynamic properties (MMAD ~ 4 µM and FPF >80%). In-vitro evaluation also resulted in a superior ability to inhibit cancer metastasis. 3D-tumor simulation studies further established the anti-cancer efficacy of NPs as compared to just SF. CONCLUSION: The localized delivery of SF-loaded nanoparticles resulted in improved anti-tumor activity as compared to SF alone. Therefore, this strategy displays great potential as a novel treatment approach against certain lung cancers.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Sorafenibe/administração & dosagem , Administração por Inalação , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Cátions/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Neoplasias Pulmonares/patologia , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Sorafenibe/farmacologia
19.
Drug Discov Today ; 25(1): 238-247, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786365

RESUMO

Lung cancer is the second most common cancer in both men and women. Of all the lung cancer cases reported, 85% are non-small cell lung cancer (NSCLC). Although current treatments have improved the overall survival rate, success is limited, with serious treatment-related adverse effects reported. In addition, an increase in drug-resistant cancer cells limits the available treatment options. Antimicrobial peptides (AMPs) have gained much interest as anticancer drugs as they can selectively kill cancer cells but not healthy cells. Further, AMPs show minimal toxicity and minimal chances for developing resistance. In this review, I discuss the advantages of AMPs, their mechanism of action, and progress in AMP development for use in NSCLC treatment.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Animais , Humanos
20.
Pharm Res ; 37(1): 11, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873825

RESUMO

PURPOSE: Loss of vaccine potency due to extreme temperature exposure during storage and transport remains a significant obstacle to the success of many vaccines, including the Bacille Calmette-Guérin (BCG) vaccine, the only vaccine available against Mycobacterium tuberculosis. BCG is a live, attenuated vaccine requiring refrigerated storage for viability. In this study, we formulated a temperature-stable BCG dry powder using the spray drying technique. METHODS: We employed a factorial design to optimize our formulation of stabilizing excipients that included L-leucine, bovine serum albumin, polyvinylpyrrolidone, mannitol, and trehalose. Powders were characterized for their particle size, yield, water retention and uptake, glass transition temperature, and aerosol performance. Three optimal powder carrier mixtures were selected from the factorial design for BCG incorporation based on their stability-promoting and powder flow characteristics. Vaccine powders were also assessed for BCG viability and in vivo immunogenicity after long-term storage. RESULTS: Live BCG was successfully spray-dried using the optimized carriers. Dry powder BCG showed no loss in viability (25°C, up to 60% relative humidity; RH) and ~2-log loss in viability (40°C, 75% RH) after one year of storage. The aerodynamic size of the powders was in the respirable range. Further, when healthy mice were immunized intradermally with reconstituted BCG powders (storage for 2 years), the vaccine retained its immunogenicity. CONCLUSION: We developed a spray-dried BCG vaccine that was viable and antigenic after long-term storage. To our knowledge, this is a first study to show room temperature stability of live BCG vaccine without any loss in viability for 12 months.


Assuntos
Vacina BCG/química , Vacina BCG/farmacologia , Composição de Medicamentos/métodos , Excipientes/química , Pós/química , Aerossóis/química , Animais , Linhagem Celular , Sobrevivência Celular , Dessecação/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Feminino , Humanos , Leucina/química , Manitol/química , Camundongos Endogâmicos C57BL , Mycobacterium bovis/citologia , Povidona/química , Soroalbumina Bovina/química , Temperatura , Distribuição Tecidual , Trealose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA