Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Vaccines (Basel) ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38793700

RESUMO

The development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine system in mice using enzymatically polymerized caffeic acid (pCA). However, we do not yet understand the molecular mechanisms by which pCA stimulates antigen-specific mucosal immune responses. In this study, we hypothesized that pCA might activate mucosal immunity at the site of administration based on our previous findings that pCA possesses immune-activating properties. However, contrary to our initial hypothesis, the intranasal administration of pCA did not enhance the expression of various genes involved in mucosal immune responses, including the enhancement of IgA responses. Therefore, we investigated whether pCA forms a complex with antigenic proteins and enhances antigen delivery to mucosal dendritic cells located in the lamina propria beneath the mucosal epithelial layer. Data from gel filtration chromatography indicated that pCA forms a complex with the antigenic protein ovalbumin (OVA). Furthermore, we examined the promotion of OVA delivery to nasal mucosal dendritic cells (mDCs) after the intranasal administration of pCA in combination with OVA and found that OVA uptake by mDCs was increased. Therefore, the data from gel filtration chromatography and flow cytometry imply that pCA enhances antigen-specific antibody production in both mucosal and systemic compartments by serving as an antigen-delivery vehicle.

2.
Nature ; 629(8013): 901-909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658756

RESUMO

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Assuntos
Microbioma Gastrointestinal , Macrófagos , Animais , Camundongos , Macrófagos/imunologia , Masculino , Microbioma Gastrointestinal/imunologia , Feminino , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Fígado/imunologia , Fígado/patologia , Fígado/microbiologia , Colangite Esclerosante/imunologia , Colangite Esclerosante/microbiologia , Colangite Esclerosante/patologia , Veia Porta , Interleucina-10/metabolismo , Simbiose/imunologia , Análise de Célula Única , Inflamação/imunologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Humanos
3.
BMC Complement Med Ther ; 23(1): 281, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553633

RESUMO

Immune cell activation is essential for cancer rejection; however, the tumor microenvironment leads to deterioration of immune function, which enables cancer cells to survive and proliferate. We previously reported that oral ingestion of Lentinula Edodes Mycelia (L.E.M.) extract enhances the tumor antigen-specific T-cell response and exerts an antitumor effect in a tumor-bearing mouse model. In this study, we focused on antigen-presenting cells (APCs) located upstream of the immune system, induced a T-cell response, then examined the impact of L.E.M. extract on the APCs. L.E.M. extract enhanced the expression of MHC-I, MHC-II, CD86, CD80, and CD40 in bone marrow-derived dendritic cells (DCs) and strongly induced the production of IL-12. L.E.M.-stimulated DCs enhanced IFN-γ production from CD8+ T cells and induced their differentiation into effector cells. Furthermore, L.E.M. extract promoted IL-12 production and suppressed the production of IL-10 and TGF-ß by transforming bone marrow-derived macrophages into M1-like macrophages. Furthermore, in a B16F10 melanoma inoculation model, DCs in the spleen were decreased and their activation was suppressed by the presence of cancer; however, ingestion of L.E.M. extract prevented this functional deterioration of DCs. In the spleen of cancer-bearing mice, the number of CD11b- F4/80+ macrophages in a hypoactivated state was also increased, whereas L.E.M. extract suppressed the increase of such macrophages. These findings suggest that L.E.M. extract may exhibit an antitumor immune response by regulating the function of APCs to induce cytotoxic T lymphocytes, as well as by suppressing the decline in antigen-presenting cell activity caused by the presence of cancer.


Assuntos
Neoplasias , Cogumelos Shiitake , Camundongos , Animais , Linfócitos T CD8-Positivos , Células Apresentadoras de Antígenos , Interleucina-12/farmacologia , Imunidade , Microambiente Tumoral
4.
Front Immunol ; 14: 1111729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180123

RESUMO

Macrophages manifest as various subtypes that play diverse and important roles in immunosurveillance and the maintenance of immunological homeostasis in various tissues. Many in vitro studies divide macrophages into two broad groups: M1 macrophages induced by lipopolysaccharide (LPS), and M2 macrophages induced by interleukin 4 (IL-4). However, considering the complex and diverse microenvironment in vivo, the concept of M1 and M2 is not enough to explain diversity of macrophages. In this study, we analyzed the functions of macrophages induced by simultaneous stimulation with LPS and IL-4 (termed LPS/IL-4-induced macrophages). LPS/IL-4-induced macrophages were a homogeneous population showing a mixture of the characteristics of M1 and M2 macrophages. In LPS/IL-4-induced macrophages, expression of cell-surface M1 markers (I-Ab) was higher than in M1 macrophages, but lower expression of iNOS, and expression of M1-associated genes (Tnfα and Il12p40) were decreased in comparison to expression in M1 macrophages. Conversely, expression of the cell-surface M2 marker CD206 was lower on LPS/IL-4-induced macrophages than on M2 macrophages and expression of M2-associated genes (Arg1, Chi3l3, and Fizz1) varied, with Arg1 being greater than, Fizz1 being lower than, and Chi3l3 being comparable to that in M2 macrophages. Glycolysis-dependent phagocytic activity of LPS/IL-4-induced macrophages was strongly enhanced as was that of M1 macrophages; however, the energy metabolism of LPS/IL-4-induced macrophages, such as activation state of glycolytic and oxidative phosphorylation, was quite different from that of M1 or M2 macrophages. These results indicate that the macrophages induced by LPS and IL-4 had unique properties.


Assuntos
Interleucina-4 , Lipopolissacarídeos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo
5.
Cell Immunol ; 385: 104685, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806381

RESUMO

Cytotoxic T lymphocytes recognize antigen-derived peptides (epitopes) bound to MHC class I presented on the cell surface of virus-infected cells and cancer cells. To date, numerous pathogen-derived epitopes and cancer cell-specific epitopes have been identified and used in the development of mRNA and peptide vaccines, but much remains unknown regarding the intracellular mechanisms that generate these antigen epitopes. These mechanisms are essential for cytotoxic T cell immunity. In this paper, I outline an innovation pioneered by Professor Nilabh Shastri and me, in which we developed a biochemical system to detect antigen intermediates and illuminated the role of molecular chaperones in antigen processing.


Assuntos
Apresentação de Antígeno , Linfócitos T Citotóxicos , Epitopos , Peptídeos/metabolismo , Chaperonas Moleculares/metabolismo
6.
J Nutr Biochem ; 112: 109219, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36375731

RESUMO

Phytoestrogens play pivotal roles in controlling not only the endocrine system but also inflammatory metabolic disorders. However, the effects of dietary phytoestrogens on allergic diseases and underlying mechanisms remain unclear. In this study, we revealed the unique metabolic conversion of phytoestrogen to exert anti-allergic properties, using an ovalbumin-induced allergic rhinitis mouse model. We found that dietary secoisolariciresinol diglucoside (SDG), a phytoestrogen abundantly present in flaxseed, alleviated allergic rhinitis by the microbial conversion to enterodiol (ED). We also found that ED circulated mainly in the glucuronide form (EDGlu) in blood, and deconjugation of EDGlu to ED aglycone occurred in the nasal passage; this activity was enhanced after the induction of allergic rhinitis, which was mediated by ß-glucuronidase. We further found that IgE-mediated degranulation was inhibited by ED aglycone, but not by EDGlu, in a G protein-coupled receptor 30 (GPR30)-dependent manner. These results provide new insights into the anti-allergic properties of phytoestrogens and their metabolism in vivo for the development of novel therapeutic strategies against allergic rhinitis.


Assuntos
Antialérgicos , Rinite Alérgica , Camundongos , Animais , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Fitoestrógenos/metabolismo , Glucuronidase , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Rinite Alérgica/tratamento farmacológico
7.
Nat Commun ; 13(1): 4477, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982037

RESUMO

The gut microbiome is an important determinant in various diseases. Here we perform a cross-sectional study of Japanese adults and identify the Blautia genus, especially B. wexlerae, as a commensal bacterium that is inversely correlated with obesity and type 2 diabetes mellitus. Oral administration of B. wexlerae to mice induce metabolic changes and anti-inflammatory effects that decrease both high-fat diet-induced obesity and diabetes. The beneficial effects of B. wexlerae are correlated with unique amino-acid metabolism to produce S-adenosylmethionine, acetylcholine, and L-ornithine and carbohydrate metabolism resulting in the accumulation of amylopectin and production of succinate, lactate, and acetate, with simultaneous modification of the gut bacterial composition. These findings reveal unique regulatory pathways of host and microbial metabolism that may provide novel strategies in preventive and therapeutic approaches for metabolic disorders.


Assuntos
Metabolismo dos Carboidratos , Clostridiales , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade , Acetilcolina , Administração Oral , Adulto , Amilopectina , Animais , Clostridiales/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Humanos , Japão , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Obesidade/terapia , Ornitina , Simbiose
8.
Vaccine ; 40(36): 5399-5403, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35918205

RESUMO

Vaccination is one of the most powerful strategies for the preventive and therapeutic control of infectious diseases and other diseases such as cancer. To maximize the effectiveness of vaccines, it is necessary to modify the immune responses by means of adjuvants. The gut environment, including commensal bacteria and dietary components, has been proven to be able to mediate host immunity. An understanding of gut microbiota-related regulation of immune responses has revealed the potential adjuvanticity of particular microbiota-derived compounds, driving exploration into their development as vaccine adjuvants. In this review, we discuss how commensal bacteria and compounds derived from them regulate host immune responses, and we propose the potential application of these compounds as vaccine adjuvants.


Assuntos
Microbioma Gastrointestinal , Vacinas , Adjuvantes Imunológicos , Adjuvantes de Vacinas , Bactérias , Vacinação
9.
BMC Pulm Med ; 22(1): 138, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395844

RESUMO

BACKGROUND: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is considered to be associated with chronic inflammation; however, the underlying mechanism remains unclear. Recently, altered gut microbiota were found in patients with pulmonary arterial hypertension (PAH) and in experimental PAH models. The aim of this study was to characterize the gut microbiota in patients with CTEPH and assess the relationship between gut dysbiosis and inflammation in CTEPH. METHODS: In this observational study, fecal samples were collected from 11 patients with CTEPH and 22 healthy participants. The abundance of gut microbiota in these fecal samples was assessed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Inflammatory cytokine and endotoxin levels were also assessed in patients with CTEPH and control participants. RESULTS: The levels of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and macrophage inflammatory protein (MIP)-1α were elevated in patients with CTEPH. Plasma endotoxin levels were significantly increased in patients with CTEPH (P < 0.001), and were positively correlated with TNF-α, IL-6, IL-8, and MIP-1α levels. The 16S rRNA gene sequencing and the principal coordinate analysis revealed the distinction in the gut microbiota between patients with CTEPH (P < 0.01) and control participants as well as the decreased bacterial alpha-diversity in patients with CTEPH. A random forest analysis for predicting the distinction in gut microbiota revealed an accuracy of 80.3%. CONCLUSION: The composition of the gut microbiota in patients with CTEPH was distinct from that of healthy participants, which may be associated with the elevated inflammatory cytokines and endotoxins in CTEPH.


Assuntos
Microbioma Gastrointestinal , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Citocinas , Endotoxinas , Humanos , Inflamação , Interleucina-8 , Japão , RNA Ribossômico 16S/genética , Fator de Necrose Tumoral alfa
10.
Anticancer Res ; 42(3): 1589-1598, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35220256

RESUMO

BACKGROUND/AIM: The gut microbiome plays an important role in the immune system and has attracted attention as a biomarker of several diseases, including cancer. In this study, we examined the relationship between the gut microbiome and lung cancer progression. PATIENTS AND METHODS: Female never-smokers diagnosed with lung adenocarcinoma were consecutively enrolled between May 2018 and August 2019, and fecal samples were collected. Principal coordinate analyses were performed using Bray-Curtis distance matrices to investigate the effects of clinical variables (age, body mass index, Tumor-Node-Metastasis stage, T category, N category, M category, primary tumor size, performance status, and EGFR mutation status) on the gut microbial community. RESULTS: A total of 37 patients were enrolled. T category and primary tumor size were significantly correlated with the gut microbial community (p=0.018 and 0.041, respectively). CONCLUSION: This study identified the gut microbiome as a promising biomarker of lung cancer progression.


Assuntos
Adenocarcinoma de Pulmão/microbiologia , Microbioma Gastrointestinal , Neoplasias Pulmonares/microbiologia , não Fumantes , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Biomarcadores Tumorais/genética , Progressão da Doença , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores Sexuais
11.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076024

RESUMO

Besides promoting inflammation by mobilizing lipid mediators, group IIA secreted phospholipase A2 (sPLA2-IIA) prevents bacterial infection by degrading bacterial membranes. Here, we show that, despite the restricted intestinal expression of sPLA2-IIA in BALB/c mice, its genetic deletion leads to amelioration of cancer and exacerbation of psoriasis in distal skin. Intestinal expression of sPLA2-IIA is reduced after treatment with antibiotics or under germ-free conditions, suggesting its upregulation by gut microbiota. Metagenome, transcriptome, and metabolome analyses have revealed that sPLA2-IIA deficiency alters the gut microbiota, accompanied by notable changes in the intestinal expression of genes related to immunity and metabolism, as well as in the levels of various blood metabolites and fecal bacterial lipids, suggesting that sPLA2-IIA contributes to shaping of the gut microbiota. The skin phenotypes in Pla2g2a-/- mice are lost (a) when they are cohoused with littermate WT mice, resulting in the mixing of the microbiota between the genotypes, or (b) when they are housed in a more stringent pathogen-free facility, where Pla2g2a expression in WT mice is low and the gut microbial compositions in both genotypes are nearly identical. Thus, our results highlight a potentially new aspect of sPLA2-IIA as a modulator of gut microbiota, perturbation of which affects distal skin responses.


Assuntos
Microbioma Gastrointestinal/imunologia , Fosfolipases A2 do Grupo II/metabolismo , Psoríase , Neoplasias Cutâneas , Animais , Carcinogênese/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Patologia Molecular/métodos , Psoríase/imunologia , Psoríase/microbiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/microbiologia
12.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013573

RESUMO

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Assuntos
Dieta Hiperlipídica , Macrófagos , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
13.
Cancer Sci ; 113(1): 277-286, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779109

RESUMO

Escherichia coli containing polyketide synthase in the gut microbiota (pks+ E coli) produce a polyketide-peptide genotoxin, colibactin, and are suspected to play a role in the development of colorectal neoplasia. To clarify the role of pks+ E coli in the early stage of tumorigenesis, we investigated whether the pks status of E coli was associated with the prevalence of colorectal neoplasia. This cross-sectional analysis of data from a prospective cohort in Izu Oshima, Japan included asymptomatic residents aged 40-79 years who underwent screening colonoscopy and provided a stool sample. We identified 543 participants with colorectal neoplasia (22 colorectal cancer and 521 adenoma) as cases and 425 participants with normal colon as controls. The pks status of E coli was assayed using stool DNA and specific primers that detected pks+ E coli. The proportion of pks+ E coli was 32.6% among cases and 30.8% among controls. Compared with those with pks- E coli, the odds ratio (OR) (95% confidence interval) for participants with pks+ E coli was 1.04 (0.77-1.41) after adjusting for potential confounders. No statistically significant associations were observed regardless of tumor site or number of colorectal adenoma lesions. However, stratified analyses revealed increased ORs among participants who consumed cereals over the median intake or vegetables under the median intake. Overall, we found no statistically significant association between pks+ E coli and the prevalence of colorectal adenoma lesions among this Japanese cohort. However, positive associations were suggested under certain intake levels of cereals or vegetables.


Assuntos
Adenoma/epidemiologia , Neoplasias Colorretais/epidemiologia , Escherichia coli/isolamento & purificação , Policetídeo Sintases/metabolismo , Adenoma/microbiologia , Adulto , Idoso , Colonoscopia , Neoplasias Colorretais/microbiologia , Estudos Transversais , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Feminino , Microbioma Gastrointestinal , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos
14.
Int Immunopharmacol ; 101(Pt A): 108280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710845

RESUMO

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3ß-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.


Assuntos
Imunidade nas Mucosas/imunologia , Imunoglobulina A/metabolismo , Interleucina-6/imunologia , Vacinas/imunologia , Administração Intranasal , Animais , Formação de Anticorpos/efeitos dos fármacos , Antígenos/imunologia , COVID-19/prevenção & controle , Cátions/imunologia , Cátions/uso terapêutico , Ácidos Graxos Monoinsaturados/imunologia , Ácidos Graxos Monoinsaturados/uso terapêutico , Feminino , Imunidade nas Mucosas/efeitos dos fármacos , Imunoglobulina G/sangue , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Lipossomos/imunologia , Lipossomos/uso terapêutico , Camundongos , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Ovalbumina/imunologia , Compostos de Amônio Quaternário/imunologia , Compostos de Amônio Quaternário/uso terapêutico , Baço/metabolismo , Vacinas/administração & dosagem
15.
BMC Microbiol ; 21(1): 235, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429063

RESUMO

BACKGROUND: The Escherichia coli strain that is known to produce the genotoxic secondary metabolite colibactin is linked to colorectal oncogenesis. Therefore, understanding the properties of such colibactin-positive E. coli and the molecular mechanism of oncogenesis by colibactin may provide us with opportunities for early diagnosis or prevention of colorectal oncogenesis. While there have been major advances in the characterization of colibactin-positive E. coli and the toxin it produces, the infection route of the clb + strain remains poorly characterized. RESULTS: We examined infants and their treatments during and post-birth periods to examine potential transmission of colibactin-positive E. coli to infants. Here, analysis of fecal samples of infants over the first month of birth for the presence of a colibactin biosynthetic gene revealed that the bacterium may be transmitted from mother to infant through intimate contacts, such as natural childbirth and breastfeeding, but not through food intake. CONCLUSIONS: Our finding suggests that transmission of colibactin-positive E. coli appears to be occurring at the very early stage of life of the newborn and hints at the possibility of developing early preventive measures against colorectal cancer.


Assuntos
Toxinas Bacterianas/biossíntese , Carcinógenos/metabolismo , Neoplasias Colorretais/microbiologia , Infecções por Escherichia coli/transmissão , Escherichia coli/patogenicidade , Transmissão Vertical de Doenças Infecciosas , Peptídeos/metabolismo , Policetídeos/metabolismo , Carcinogênese , Carcinógenos/análise , Neoplasias Colorretais/etiologia , Escherichia coli/química , Escherichia coli/metabolismo , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Masculino , Mães , Peptídeos/análise , Peptídeos/genética , Policetídeos/análise
16.
BMC Microbiol ; 21(1): 196, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182940

RESUMO

BACKGROUND: Colibactin-producing Escherichia coli containing polyketide synthase (pks+ E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal analysis in adults. We examined the association between stool patterns and the prevalence of pks+ E. coli isolated from microbiota in fecal samples of 224 healthy Japanese individuals. RESULTS: Stool patterns were determined through factorial analysis using a previously validated questionnaire that included stool frequency, volume, color, shape, and odor. Factor scores were classified into tertiles. The prevalence of pks+ E. coli was determined by using specific primers for pks+ E. coli in fecal samples. Plasma and fecal fatty acids were measured via gas chromatography-mass spectrometry. The prevalence of pks+ E. coli was 26.8%. Three stool patterns identified by factorial analysis accounted for 70.1% of all patterns seen (factor 1: lower frequency, darker color, and harder shape; factor 2: higher volume and softer shape; and factor 3: darker color and stronger odor). Multivariable-adjusted odds ratios (95% confidence intervals) of the prevalence of pks+ E. coli for the highest versus the lowest third of the factor 1 score was 3.16 (1.38 to 7.24; P for trend = 0.006). This stool pattern exhibited a significant positive correlation with fecal isobutyrate, isovalerate, valerate, and hexanoate but showed a significant negative correlation with plasma eicosenoic acid and α-linoleic acid, as well as fecal propionate and succinate. No other stool patterns were significant. CONCLUSIONS: These results suggest that stool patterns may be useful in the evaluation of the presence of tumorigenic bacteria and fecal fatty acids through self-monitoring of stool status without the requirement for specialist technology or skill. Furthermore, it may provide valuable insight about effective strategies for the early discovery of CRC.


Assuntos
Neoplasias Colorretais/microbiologia , Ácidos Graxos/análise , Ácidos Graxos/sangue , Fezes/química , Fezes/microbiologia , Adulto , Microbioma Gastrointestinal/genética , Humanos , Japão , Prevalência
17.
Pharmaceutics ; 13(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923897

RESUMO

Infectious diseases are the second leading cause of death worldwide, highlighting the importance of the development of a novel and improved strategy for fighting pathogenic microbes. Streptococcus pneumoniae is a highly pathogenic bacteria that causes pneumonia with high mortality rates, especially in children and elderly individuals. To solve these issues, a mucosal vaccine system would be the best solution for the prevention and treatment of these diseases. We have recently reported that enzymatically polymerized caffeic acid (pCA) acts as a mucosal adjuvant when co-administered with antigenic proteins via the nasal route. Moreover, the sources of caffeic acid and horseradish peroxidase are ingredients found commonly in coffee beans and horseradish, respectively. In this study, we aimed to develop a pneumococcal nasal vaccine comprising pneumococcal surface protein A (PspA) and pCA as the mucosal adjuvant. Intranasal immunization with PspA and pCA induced the production of PspA-specific antibody responses in the mucosal and systemic compartments. Furthermore, the protective effects were tested in a murine model of S. pneumoniae infection. Intranasal vaccination conferred antigen-dependent protective immunity against a lethal infection of S. pneumoniae. In conclusion, pCA is useful as a serotype-independent universal nasal pneumococcal vaccine formulation.

18.
FASEB J ; 35(4): e21354, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749892

RESUMO

ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.


Assuntos
Quimiocina CXCL1/metabolismo , Dermatite de Contato/prevenção & controle , Ácido Eicosapentaenoico/análogos & derivados , Queratinócitos/efeitos dos fármacos , Animais , Anticorpos Monoclonais/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Células da Medula Óssea , Quimiocina CXCL1/genética , Dieta , Dinitrofluorbenzeno , Regulação para Baixo , Ácido Eicosapentaenoico/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HaCaT , Humanos , Óleo de Semente do Linho/administração & dosagem , Óleo de Semente do Linho/metabolismo , Camundongos
19.
Angew Chem Int Ed Engl ; 60(18): 10023-10031, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33522128

RESUMO

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.


Assuntos
Alcaligenes faecalis/química , Lipídeo A/química , Lipopolissacarídeos/química , Animais , Configuração de Carboidratos , Linhagem Celular , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/farmacologia , Camundongos , Receptor 4 Toll-Like/agonistas
20.
PLoS One ; 16(2): e0246422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556119

RESUMO

Despite significant modern medicine progress, having an infectious disease is a major risk factor for humans. Mucosal vaccination is now widely considered as the most promising strategy to defeat infectious diseases; however, only live-attenuated and inactivated mucosal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved mainly because of the lack of safe and effective methodologies to either activate or initiate host mucosal immune responses. We have recently elucidated that intranasal administration of enzymatically polymerised caffeic acid potentiates antigen-specific mucosal and systemic antibody responses in mice. However, our earlier study has not confirmed whether these effects are specific to the polymer synthesised from caffeic acid. Here, we show that enzymatically polymerised polyphenols (EPPs) from various phenolic compounds possess mucosal adjuvant activities when administered nasally with an antigen to mice. Potentiation of antigen-specific immune responses by all EPPs tested in this study showed no clear difference among the precursors used. We found that intranasal administration of ovalbumin as the antigen, in combination with all enzymatically polymerised polyphenols used in this study, induced ovalbumin-specific mucosal IgA in the nasal cavity, bronchoalveolar lavage fluid, vaginal fluids, and systemic IgG, especially IgG1, in sera. Our results demonstrate that the mucosal adjuvant activities of polyphenols are not limited to polymerised caffeic acid but are broadly observable across the studied polyphenols. These properties of polyphenols may be advantageous for the development of safe and effective nasal vaccine systems to prevent and/or treat various infectious diseases.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Infecções/imunologia , Polifenóis/imunologia , Animais , Formação de Anticorpos , Ácidos Cafeicos/imunologia , Feminino , Imunoglobulina A/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA