Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 10(24): e15548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564177

RESUMO

Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head-up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia. The purpose of this study was to determine if an increase in the vascular hydrostatic gradient via 70° HUT increases tumor perfusion and decreases tumor hypoxia in a preclinical orthotopic model of prostate cancer. Male Copenhagen rats (n = 17) were orthotopically injected with Dunning R-3327 (AT-1) prostate adenocarcinoma cells to induce prostate tumors. After tumors were established, prostate tumor perfusion and hypoxia were measured in rats during level (0°) and 70° HUT positions. To compare the magnitude of the hydrostatic column to that present in humans, ultrasound was used to measure the heart to prostate distance in male human subjects to estimate the prostate vascular hydrostatic pressure with the upright posture. In young rats, no differences were detected in prostate tumor perfusion or prostate tumor hypoxia with 70° HUT versus the level position. However, from the retrospective study, young rats increased prostate vascular resistance to HUT, whereas aged rats lacked this response. Tumor vessels co-opted from existing functional vasculature in young rats may be sufficient to negate increases in perfusion pressure with HUT seen in aged rats. Additionally, in humans, the estimated hydrostatic column at the level of the prostate is five times greater than that of the rat. Therefore, 70° HUT may elicit increases in prostate/prostate tumor blood flow in humans that is not seen in rats.


Assuntos
Hemodinâmica , Neoplasias da Próstata , Humanos , Masculino , Ratos , Animais , Estudos Retrospectivos , Hipóxia , Perfusão , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia
2.
Am J Transl Res ; 13(1): 197-209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33527018

RESUMO

BACKGROUND: Recent evidence suggests prostate cancer independent of treatment has atrophic effects on whole heart and left ventricular (LV) masses, associated with reduced endurance exercise capacity. In a pre-clinical model, we tested the hypothesis that high-intensity training could prevent cardiac atrophy with prostate cancer and alter cardiac protein degradation mechanisms. METHODS: Dunning R-3327 AT-1 prostate cancer cells (1×105) were injected into the ventral prostate lobe of 5-6 mo immunocompetent Copenhagen rats (n=24). These animals were randomized into two groups, tumor-bearing exercise (TBEX, n=15) or tumor bearing sedentary (TBS, n=9). Five days after surgery, TBEX animals began exercise on a treadmill (25 m/min, 15° incline) for 45-60 min/day for 18±2 days. Pre-surgery (Pre), and post-exercise training (Post) echocardiographic evaluation (Vivid S6, GE Health Care), using the parasternal short axis view, was used to examine ventricle dimensions. Markers of protein degradation (muscle atrophy F-box, Cathepsin B, Cathepsin L) in the left ventricle were semi-quantified via Western Blot. RESULTS: There were no significant differences in tumor mass between groups (TBEX 3.4±0.7, TBS 2.8±0.6 g, P=0.3), or body mass (TBEX 317±5, TBS 333±7 g, P=0.2). Heart-to-body mass ratio was lower in TBS group compared to TBEX (2.3±0.1 vs. 2.5±0.1 mg/g, P<0.05). LV/body mass ratio was also lower in the TBS group (1.6±0.1 vs. 1.8±0.1 mg/g, P<0.05). From Pre-Post, TBEX had significant increases in SV (~20% P<0.05) whereas TBS had no significant change. There were no significant differences between groups for markers of protein degradation. CONCLUSION: This study suggests that high-intensity exercise can improve LV function and increase LV mass concurrent with prostate cancer development, versus sedentary counterparts. Given cardiac dysfunction often manifests with conventional anti-cancer treatments, a short-term high-intensity training program, prior to treatment, may improve cardiac function and fatigue resistance in cancer patients.

3.
Am J Cancer Res ; 9(4): 650-667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105994

RESUMO

Physical activity is associated with diminished risk of several cancers, and preclinical studies suggest exercise training may alter tumor cell growth in certain tissue(s) (e.g., adipose). From moderate-intensity exercise-trained rats versus sedentary controls, we hypothesized 1) there will be a decreased prostate cancer cell viability and migration in vitro and, within the prostate, a reduced 5α-reductase 2 (5αR2) and increased caspase-3 expression, and 2) that exercise training in tumor-bearing (TB) animals will demonstrate a reduced tumor cell viability in prostate-conditioned media. Serum and prostate were harvested from sedentary or exercise-trained (treadmill running, 10-11 weeks) immune-competent (Copenhagen; n = 20) and -deficient (Nude; n = 18) rats. AT-1 and PC-3 prostate cancer cells were grown in one or more of the following: serum-supplemented media (SSM), SSM from TB rats (SSM-TB), prostate-conditioned media (PCM) or PCM from TB rats (PCM-TB) for 24-96 h under normoxic (18.6% O2) or hypoxic (5% O2) conditions. Under normoxic condition, there was a decreased AT-1 cell viability in SSM and PCM from the exercise-trained (ET) immune-competent rats, but no difference in PC-3 cell viability in SSM and PCM from ET Nude rats versus the sedentary (SED) group, or in SSM-TB from ET-TB Nude rats versus the SED-TB group. However, there was a decreased PC-3 cell viability in the PCM-TB of the ET-TB group versus SED-TB group. PC-3 cell viability in all conditioned media types was not altered between groups with hypoxia. In the prostate, exercise training did not alter 5αR2 expression levels, but increased caspase-3 expression levels. In conclusion, prior exercise status reduced prostate cancer cell viability in the serum and prostate of trained rats but did not modify several other key prostate tumor cell growth characteristics (e.g., migration, cell cycle except in S phase of PC-3 cells in PCM-TB). Importantly, once the tumor was established, exercise training reduced tumor cell viability in the surrounding prostate, which may help explain the reduced severity of the disease in patients that exercise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA