Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257207

RESUMO

Natural aromas like cinnamaldehyde are suitable solvents to extract curcuminoids, the active ingredients found in the rhizomes of Curcuma longa L. In a pursuit to find other nature-based solvents, capable of solving curcumin, forty fragrances and flavours were investigated in terms of their solubilisation power. Aroma compounds were selected according to their molecular structure and functional groups. Their capabilities of solving curcumin were examined by UV-Vis spectroscopy and COSMO-RS calculations. The trends of these calculations were in accordance with the experimental solubilisation trend of the solubility screening and a list with the respective curcumin concentrations is given; σ-profiles and Gibbs free energy were considered to further investigate the solubilisation process of curcumin, which was found to be based on hydrogen bonding. High curcumin solubility was achieved in the presence of solvent (mixtures) with high hydrogen-bond-acceptor and low hydrogen-bond-donor abilities, like γ- and δ-lactones. The special case of DMSO was also examined, as the highest curcumin solubility was observed with it. Possible specific interactions of selected aroma compounds (citral and δ-hexalactone) with curcumin were investigated via 1H NMR and NOESY experiments. The tested flavours and fragrances were evaluated regarding their potential as green alternative solvents.

2.
J Colloid Interface Sci ; 659: 833-848, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218087

RESUMO

MOTIVATION: Surfactants like C8E8CH2COOH have such bulky headgroups that they cannot show the common sphere-to-cylinder transition, while surfactants like C18:1E2CH2COOH are mimicking lipids and form only bilayers. Mixing these two types of surfactants allows one to investigate the competition between intramicellar segregation leading to disc-like bicelles and the temperature dependent curvature constraints imposed by the mismatch between heads and tails. EXPERIMENTS: We establish phase diagrams as a function of temperature, surfactant mole ratio, and active matter content. We locate the isotropic liquid-isotropic liquid phase separation common to all nonionic surfactant systems, as well as nematic and lamellar phases. The stability and rheology of the nematic phase is investigated. Texture determination by polarizing microscopy allows us to distinguish between the different phases. Finally, SANS and SAXS give intermicellar distances as well as micellar sizes and shapes present for different compositions in the phase diagrams. FINDINGS: In a defined mole ratio between the two components, intramicellar segregation wins and a viscoelastic discotic nematic phase is present at low temperature. Partial intramicellar mixing upon heating leads to disc growth and eventually to a pseudo-lamellar phase. Further heating leads to complete random mixing and an isotropic phase, showing the common liquid-liquid miscibility gap. This uncommon phase sequence, bicelles, lamellar phase, micelles, and water-poor packed micelles, is due to temperature induced mixing combined with dehydration of the headgroups. This general molecular mechanism explains also why a metastable water-poor lamellar phase quenched by cooling can be easily and reproducibly transformed into a nematic phase by gentle hand shaking at room temperature, as well as the entrapment of air bubbles of any size without encapsulation by bilayers or polymers.

3.
J Colloid Interface Sci ; 641: 631-642, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963256

RESUMO

HYPOTHESIS: The role of hormones and polyphenolic acids in communication and regulation of biological processes can be linked to their physical-chemical interaction with target compounds and water. Further, the variety of polyphenolic acids suggests adjustable hydrotropic properties of these natural compounds. EXPERIMENTS: Phase transition temperature (PTT) measurements of binary water/di(propylene glycol) n-propyl ether (DPnP) or propylene glycol n-propyl ether (PnP) systems with sodium dehydroepiandrosterone sulfate (NaDHEAS), indole-3-acetate (NaIAA), indole-3-butyrate (NaIBA) - common hormones -, and sodium polyphenolates should unravel their salting-in/-out properties. Their salting-in/-out behavior was compared to the compounds' surface-active and structuring properties via surface tension, dynamic light scattering (DLS) and Nuclear magnetic resonance (NMR) experiments. FINDINGS: All hormone salts were revealed as salting-in agents. PTT, surface tension and DLS measurements indicated surfactant-like behavior of the hormone NaDHEAS, and hydrotropic behavior of NaIAA and NaIBA. The salting-in/-out properties of sodium polyphenolates - in an (anti-)hydrotrope range - are adjustable with functional groups. The (i) absence of nano-structuring in pure water, (ii) the reduction of the DPnP nano-structuring in water in presence of sodium polyphenolates and (iii) the absence of a slope change of the PTT curves at the critical aggregation concentration showed that the DPnP/polyphenolate interactions are of molecular hydrotropic and not of micellar/aggregative nature.


Assuntos
Reguladores de Crescimento de Plantas , Sais , Sais/química , Cloreto de Sódio , Tensoativos/química , Sódio , Hormônios , Água , Propilenoglicóis
4.
Langmuir ; 38(34): 10392-10399, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976253

RESUMO

Chemical gardens are self-assembled structures with intricate plant-like morphologies and consist of mineralized membranes, which form spontaneously at interfaces between compartments with dissimilar chemical composition, most typically acidic metal salt and alkaline sodium silicate solutions. While this phenomenon is thought to occur in a number of practical settings, it has also proven to be valuable for investigating transport characteristics in distinct applied systems. For example, coupled diffusion and precipitation processes were monitored in silica gardens based on calcium and iron salts, considered to be models for cement hydration and steel corrosion, respectively. Here we extend these studies to the case of aluminum-based silica gardens, one of the so far less frequently investigated examples of silica gardens. To this end, single macroscopic tubes were prepared in a reproducible way by the controlled addition of sodium silicate solution to a pellet of pressed aluminum nitrate. Continued sampling of the volumes enclosed by and surrounding the formed membraneous structure allowed the time-dependent development of ion concentration gradients to be tracked over extended periods of time, while both the pH and electrochemical potential differences across the membrane were recorded online by immersed probes. The dynamic behavior revealed in this way was finally complemented by ex-situ analyses of the composition of the formed tubes. The collected data shows that the as-prepared tubular structures consist of sodium aluminosilicate phases with certain similarities to zeolites and geopolymers. The emerging tube wall was further found to be permeable to all ionic species present in the system, allowing significant electrochemical potential to be sustained over tens of hours until diffusion had eventually diminished the initially generated gradients. The findings of this work may have important implications for the geochemical fate of natural aluminosilicate sources, the use of such geopolymers in construction applications, and the synthesis and properties of zeolites.

5.
J Colloid Interface Sci ; 621: 470-488, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35483179

RESUMO

HYPOTHESIS: In a recent paper, we determined the phase behavior of an aqueous solution of octyl ether octaethylene oxide carboxylic acid ([H+][C8E8c-], Akypo™ LF2) and with partial replacement of H+ by Na+ and Ca2+. It was found that even the neat surfactants are liquid at room temperature and that they form only direct micelles for any aqueous content and over large temperature ranges. The aim of the present work was to find an explanation for the clouding in these systems as well as for the coacervation observed at very low surfactant content. We expected that very similar phase diagrams would be found for a full replacement of H+ by the mentioned ions. EXPERIMENTS: We established the respective phase diagrams of the above-mentioned salts in water and determined the structures of the occurring phases in detail with small-and wide-angle X-ray scattering, small-angle neutron scattering, dynamic light scattering, heat flux differential scanning calorimetry, as well as surface tension, ESI-MS, and NMR experiments. FINDINGS: To our surprise, we discovered a new type of nematic phase between an isotropic and a hexagonal phase. Based on the complete description of all occurring phases both in the acidic and the charged surfactant systems, we were able to design a coherent and unified picture of all these phases, including the auto-coacervation at low surfactant concentration, the non-conventional clouding at high temperatures, the unusual liquid crystalline phases in a small domain at high surfactant concentrations, and the Lß phase at low temperatures and at very low water content. It turned out that all phenomena are a consequence of the subtle interplay between a) the packing constraint due to the very large head-group, b) the relatively small hydrocarbon chain and c) the tunable electrostatic interactions versus entropy.


Assuntos
Micelas , Tensoativos , Ácidos Carboxílicos , Óxido de Etileno , Íons , Tensoativos/química , Água/química
6.
J Colloid Interface Sci ; 590: 375-386, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556757

RESUMO

HYPOTHESIS: The surfactant C8EO8CH2COOH (Akypo LF2) and its salts have a small hydrophobic and a significantly longer hydrophilic part. As a consequence, there must be a significant steric constraint, once these surfactant molecules form micelles. In addition, the partially charged headgroups should bring some additional fine-tuning via electrostatic interactions to this "essentially non-ionic" surfactant. EXPERIMENTS: Phase diagrams of binary mixtures of water and C8EO8CH2COOH are established over large concentration and temperature ranges, also at different pHs and in the presence of sodium and calcium ions. Surface tensions and osmotic pressures are measured to understand the systems. To evaluate the microstructures, also Dynamic Light Scattering and Small-Angle X-ray Scattering are performed. FINDINGS: Apart from the formation of coacervates at very low surfactant concentrations, spherical micelles persist over the whole concentration and temperature range and do not change in size and shape. At very high surfactant concentrations, above 60% by weight, where the headgroups are no longer fully hydrated, the standard core-shell structure of micelles vanishes and highly stabilized aggregates of 8-26 octyl chains are suspended in interdigitated polyoxyethylene layers and form an "osmotic brush". When the acid is partially transformed to a sodium salt, the repulsion between the micelles increases, whereas bridging between micelles prevails, when the counterions are calcium cations. Remarkably, the negative charges of the headgroups are randomly distributed in the hydrophilic ethylene oxide shell. Altogether, a phase diagram without lyotropic liquid crystalline phases and an extreme shift of the cloud-point in temperature and composition is found, similar to the phase diagram of C8EO8OH already known in literature. The phase properties can be explained by the curvature and packing constraints together with the Lindemann rule applied to short hydrocarbon chains.

7.
J Colloid Interface Sci ; 392: 274-280, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23200100

RESUMO

In this work we show how a new promising green and highly water-soluble surfactant can be designed based on recent progress in the knowledge of counterion-headgroup binding and crystallization behavior. The result is the combination of a most classical surfactant anion, dodecylsulfate (DS), with choline (Ch), a natural green cation. The advantage of the physiological metabolite choline is its bulky structure that prevents ChDS from easy crystallization and thus leads to a considerable lowering of the Krafft point down to 0°C. The counterion-headgroup binding is reflected by the aqueous phase behavior of ChDS. Conductivity, surface tension, and cryo-TEM measurements allow the characterization of the dilute micellar region, while the penetration scan technique enables the establishment of a preliminary aqueous phase diagram. In addition, the influence of different mono- and divalent salts on the solubility of ChDS is investigated. The results are compared to the alkali sulfate and alkylcarboxylate homologs, and reveal that ChDS is less sensitive towards addition of salts than, for instance, choline carboxylates due to an increased counterion-headgroup association. Further, cytotoxicity tests on HeLa and SK-Mel 28 cells are presented and compared to other surfactants, showing that ChDS is no more harmful than its sodium counterpart SDS. Taken together, our findings highlight that the harmless green cation choline is of great potential for the design of new surfactants.


Assuntos
Ácidos Alcanossulfônicos/farmacologia , Antineoplásicos/farmacologia , Colina/farmacologia , Tensoativos/farmacologia , Ácidos Alcanossulfônicos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Relação Estrutura-Atividade , Tensoativos/química
8.
Langmuir ; 28(22): 8318-28, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22537241

RESUMO

For many decades, the solubilization of long-chain triglycerides in water has been a challenge. A new class of amphiphiles has been created to overcome this solubilization problem. The so-called "extended" surfactants contain a hydrophilic-lipophilic linker to reduce the contrast between the surfactant-water and surfactant-oil interfaces. In the present contribution, the effects of different anions and cations on the phase behavior of a mixture containing an extended surfactant (X-AES), a hydrotrope (sodium xylene sulfonate, SXS), water, and rapeseed oil were determined as a function of temperature. Nanoemulsions were obtained and characterized by conductivity measurements, light scattering, and optical microscopy. All salting-out salts show a transition from a clear region (O/W nanoemulsion), to a lamellar liquid crystalline phase region, a clear phase (bicontinuous L(3)), and again to a lamellar liquid crystalline phase region with increasing temperature. For the phase diagrams with NaSCN and Na(2)SO(4), only one clear region (O/W nanoemulsion) was observed, which turns into a lamellar phase region at elevated temperatures. Furthermore, the stability of the nanoemulsions was investigated by time-dependent measurements: the visual observation of phase separation, droplet size by dynamic light scattering (DLS), and optical microscopy. The mechanism of the different phase transitions is also discussed.


Assuntos
Óleos de Plantas/química , Tensoativos/química , Triglicerídeos/química , Cristalização , Condutividade Elétrica , Emulsões , Ácidos Graxos Monoinsaturados , Interações Hidrofóbicas e Hidrofílicas , Microscopia , Nanoestruturas , Transição de Fase , Óleo de Brassica napus , Sais , Espectrofotometria , Sulfatos/química , Propriedades de Superfície , Temperatura , Tiocianatos/química , Água/química , Xilenos/química
9.
Langmuir ; 24(4): 1271-83, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18220430

RESUMO

Much is written about "hydrophobic forces" that act between solvated molecules and nonpolar interfaces, but it is not always clear what causes these forces and whether they should be labeled as hydrophobic. Hydrophobic effects roughly fall in two classes, those that are influenced by the addition of salt and those that are not. Bubble adsorption and cavitation effects plague experiments and simulations of interacting extended hydrophobic surfaces and lead to a strong, almost irreversible attraction that has little or no dependence on salt type and concentration. In this paper, we are concerned with hydrophobic interactions between single molecules and extended surfaces and try to elucidate the relation to electrostatic and ion-specific effects. For these nanoscopic hydrophobic forces, bubbles and cavitation effects play only a minor role and even if present cause no equilibration problems. In specific, we study the forced desorption of peptides from nonpolar interfaces by means of molecular dynamics simulations and determine the adsorption potential of mean force. The simulation results for peptides compare well with corresponding AFM experiments. An analysis of the various contributions to the total peptide-surface interactions shows that structural effects of water as well as van der Waals interactions between surface and peptide are important. Hofmeister ion effects are studied by separately determining the effective interaction of various ions with hydrophobic surfaces. An extension of the Poisson-Boltzmann equation that includes the ion-specific potential of mean force yields surface potentials, interfacial tensions, and effective interactions between hydrophobic surfaces. There, we also analyze the energetic contributions to the potential of mean force and find that the most important factor determining ion-specific adsorption at hydrophobic surfaces can best be described as surface-modified ion hydration.


Assuntos
Simulação por Computador , Modelos Químicos , Adsorção , Aminoácidos/química , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Microscopia de Força Atômica/métodos , Peptídeos/química , Proteínas/química , Cloreto de Sódio/química , Eletricidade Estática , Propriedades de Superfície , Água/química
10.
J Phys Chem B ; 108(20): 6281-7, 2004 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18950112

RESUMO

Precise complex permittivity spectra over the frequency range 0.15 GHz

11.
Int J Parasitol ; 32(10): 1219-24, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12204221

RESUMO

Proteinases have been found to play important roles in parasites. They are involved in developmental processes and facilitate invasion of host tissues as well as the digestion of host molecules for nutrition. The cysteine protease ER60 from Schistosoma mansoni, originally characterised in adults to be expressed in excretory organs, was analysed in larval stages. Transcripts were found in miracidia, in vitro generated mother sporocysts and cercariae. After cloning the promoter and terminator of the ER60 gene, a transformation vector was constructed containing the green fluorescent protein reporter gene flanked by the regulatory elements. The ER60-green fluorescent protein vector was used for transfection experiments of COS-7 cells demonstrating the functionality of the promoter in the heterologous system. To analyse the expression pattern of ER60-green fluorescent protein in larval S. mansoni, in vitro generated mother sporocysts were transformed by particle bombardment, a method which allows gene transfer into schistosomes. Molecular analyses demonstrated transcription and translation of the transgene. Furthermore, confocal laser scanning microscopy revealed ER60-induced green fluorescent protein fluorescence within the larvae. Inside primary sporocysts, tissue-specific activity was localised in the gland cells, protonephridia and several cytons. These results suggest that ER60 is expressed in the ES system of larvae and, amongst other functions, may play a role in penetration and migration processes.


Assuntos
Cisteína Endopeptidases/análise , Proteínas de Helminto/análise , Schistosoma mansoni/enzimologia , Animais , Animais Geneticamente Modificados , Células COS , Células Cultivadas , Cricetinae , Larva/citologia , Larva/enzimologia , Larva/genética , Estágios do Ciclo de Vida , Modelos Genéticos , Dados de Sequência Molecular , Oocistos/genética , Oocistos/efeitos da radiação , Schistosoma mansoni/genética , Schistosoma mansoni/crescimento & desenvolvimento , Transcrição Gênica , Transfecção/métodos
12.
Mem. Inst. Oswaldo Cruz ; 90(2): 185-189, Mar.-Apr. 1995.
Artigo em Inglês | LILACS | ID: lil-319902

RESUMO

We have established an in vitro culture system for adult schistosomes that allows monitoring gene expression for up to more than ten days. Comparing female worms that are paired with those that have been separated, we find distinct differences, clearly documenting an influence of the male in female gene expression. In perfect coincidence with classical observations that were based on histological techniques, we find that the male particularly regulates gene expression in those tissues that are characterized by cell proliferation, e.g. the vitellaria. From these results, we hypothesize that the key target for the inductive signal that is transferred from the male to the female during pairing is the activation of a growth factor that stimulates mitotic proliferation.


Assuntos
Animais , Cricetinae , Feminino , Masculino , Schistosoma mansoni , Northern Blotting , DNA de Helmintos , Fertilidade , Regulação da Expressão Gênica , Genes de Helmintos , Schistosoma mansoni , Fatores de Tempo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA