Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 40(6): 1409-1419, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34460123

RESUMO

Injured tendons do not regain their native structure except at fetal or very young ages. Healing tendons often show mucoid degeneration involving accumulation of sulfated glycosaminoglycans (GAGs), but its etiology and molecular base have not been studied substantially. We hypothesized that quality and quantity of gene expression involving the synthesis of proteoglycans having sulfated GAGs are altered in injured tendons and that a reduction in synthesis of sulfated GAGs improves structural and functional recovery of injured tendons. C57BL6/j mice were subjected to Achilles tendon tenotomy surgery. The injured tendons accumulated sulfate proteoglycans as early as 1-week postsurgery and continued so by 4-week postsurgery. Transcriptome analysis revealed upregulation of a wide range of proteoglycan genes that have sulfated GAGs in the injured tendons 1 and 3 weeks postsurgery. Genes critical for enzymatic reaction of initiation and elongation of chondroitin sulfate GAG chains were also upregulated. After the surgery, mice were treated with the 2-deoxy-d-glucose (2DG) that inhibits conversion of glucose to glucose-6-phosphate, an initial step of glucose metabolism as an energy source and precursors of monosaccharides of GAGs. The 2DG treatment reduced accumulation of sulfated proteoglycans, improved collagen fiber alignment, and reduced the cross-sectional area of the injured tendons. The modulus of the 2DG-treated groups was higher than that in the vehicle group, but not of statistical significance. Our findings suggest that mucoid degeneration in injured tendons may result from the upregulated expression of genes involved the synthesis of sulfate proteoglycans and can be inhibited by reduction of glucose utilization.


Assuntos
Tendão do Calcâneo , Tendão do Calcâneo/metabolismo , Animais , Glucose/metabolismo , Glicosaminoglicanos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteoglicanas/metabolismo , Sulfatos
2.
Adv Exp Med Biol ; 920: 63-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27535249

RESUMO

Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.


Assuntos
Transplante de Células-Tronco , Células-Tronco/fisiologia , Tendinopatia/terapia , Tendões/embriologia , Engenharia Tecidual/métodos , Adulto , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Células-Tronco/citologia , Tendinopatia/patologia
3.
Stem Cell Res Ther ; 6: 89, 2015 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-25956970

RESUMO

INTRODUCTION: Advances in tendon engineering with mesenchymal stem cells (MSCs) are hindered by a need for cues to direct tenogenesis, and markers to assess tenogenic state. We examined the effects of factors involved in embryonic tendon development on adult MSCs, and compared MSC responses to that of embryonic tendon progenitor cells (TPCs), a model system of tenogenically differentiating cells. METHODS: Murine MSCs and TPCs subjected to cyclic tensile loading, transforming growth factor-ß2 (TGFß2), and fibroblast growth factor-4 (FGF4) in vitro were assessed for proliferation and mRNA levels of scleraxis, TGFß2, tenomodulin, collagen type I and elastin. RESULTS: Before treatment, scleraxis and elastin levels in MSCs were lower than in TPCs, while other tendon markers expressed at similar levels in MSCs as TPCs. TGFß2 alone and combined with loading were tenogenic based on increased scleraxis levels in both MSCs and TPCs. Loading alone had minimal effect. FGF4 downregulated tendon marker levels in MSCs but not in TPCs. Select tendon markers were not consistently upregulated with scleraxis, demonstrating the importance of characterizing a profile of markers. CONCLUSIONS: Similar responses as TPCs to specific treatments suggest MSCs have tenogenic potential. Potentially shared mechanisms of cell function between MSCs and TPCs should be investigated in longer term studies.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Fator 4 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Tendões/citologia , Resistência à Tração , Fator de Crescimento Transformador beta2/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulação para Baixo/efeitos dos fármacos , Elastina/genética , Elastina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 4 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Transcriptoma/efeitos dos fármacos , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo
4.
J Biomech ; 47(1): 214-22, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24231248

RESUMO

Stem cell-based engineering strategies for tendons have yet to yield a normal functional tissue, due in part to a need for tenogenic factors. Additionally, the ability to evaluate differentiation has been challenged by a lack of markers for differentiation. We propose to inform tendon regeneration with developmental cues involved in normal tissue formation and with phenotypic markers that are characteristic of differentiating tendon progenitor cells (TPCs). Mechanical forces, fibroblast growth factor (FGF)-4 and transforming growth factor (TGF)-ß2 are implicated in embryonic tendon development, yet the isolated effects of these factors on differentiating TPCs are unknown. Additionally, developmental mechanisms vary between limb and axial tendons, suggesting the respective cell types are programmed to respond uniquely to exogenous factors. To characterize developmental cues and benchmarks for differentiation toward limb vs. axial phenotypes, we dynamically loaded and treated TPCs with growth factors and assessed gene expression profiles as a function of developmental stage and anatomical origin. Based on scleraxis expression, TGFß2 was tenogenic for TPCs at all stages, while loading was for late-stage cells only, and FGF4 had no effect despite regulation of other genes. When factors were combined, TGFß2 continued to be tenogenic, while FGF4 appeared anti-tenogenic. Various treatments elicited distinct responses by axial vs. limb TPCs of specific stages. These results identified tenogenic factors, suggest tendon engineering strategies should be customized for tissues by anatomical origin, and provide stage-specific gene expression profiles of limb and axial TPCs as benchmarks with which to monitor tenogenic differentiation of stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco/citologia , Tendões/embriologia , Animais , Primers do DNA , Fator 4 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Camundongos , Fenótipo , Regeneração , Estresse Mecânico , Fator de Crescimento Transformador beta2/metabolismo
5.
Stem Cell Res Ther ; 4(4): 79, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23838354

RESUMO

INTRODUCTION: Obesity, which is excessive expansion of white adipose tissue, is a major risk factor for several serious health issues, including diabetes, cardiovascular disease and cancer. Efforts to combat obesity and related diseases require understanding the basic biology of adipogenesis. However, in vitro studies do not result in lipid composition and morphology that are typically seen in vivo, likely because the in vitro conditions are not truly representative of in vivo adipose tissue formation. In vitro, low oxygen tension and cytoskeletal tension have been shown to independently regulate adipogenesis, but in vivo, these two factors simultaneously influence differentiation. METHODS: The purpose of our study was to examine the influence of physiological oxygen tension on cytoskeletal tension-mediated adipogenesis. Adipose-derived stem cells (ASCs) were differentiated under both ambient (20%) and physiological (5%) oxygen conditions and treated with cytoskeletal inhibitors, cytochalasin D or blebbistatin. Adipogenesis was assessed on the basis of gene expression and adipocyte metabolic function. RESULTS: Adipose tissue metabolic markers (glycerol-3-phosphate dehydrogenase (GPDH) and triglycerides) were significantly down-regulated by physiological oxygen levels. Reducing cytoskeletal tension through the use of chemical inhibitors, either cytochalasin D or blebbistatin, resulted in an up-regulation of adipogenic gene expression (peroxisome proliferator-activated receptor γ (PPARγ), lipoprotein lipase (LPL) and fatty acid binding protein 4 (FABP4)) and metabolic markers, regardless of oxygen levels. Cytochalasin D and blebbistatin treatment altered cytoskeletal organization and associated tension via different mechanisms; however, both conditions had similar effects on adipogenesis, suggesting that physiological oxygen-mediated regulation of adipogenesis in ASCs is modulated, in part, by cytoskeletal tension. CONCLUSIONS: These results demonstrated that interactions between the cytoskeleton and oxygen tension influence adipogenic differentiation of ASCs.


Assuntos
Adipogenia/genética , Tecido Adiposo/citologia , Oxigênio/metabolismo , Adulto , Diferenciação Celular , Proliferação de Células , Citoesqueleto , Expressão Gênica , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Fatores de Risco
6.
Stem Cell Res Ther ; 2(1): 10, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21338517

RESUMO

INTRODUCTION: Pluripotent, human stem cells hold tremendous promise as a source of progenitor and terminally differentiated cells for application in future regenerative therapies. However, such therapies will be dependent upon the development of novel approaches that can best assess tissue outcomes of pluripotent stem cell-derived cells and will be essential to better predict their safety and stability following in vivo transplantation. METHODS: In this study we used engineered, human skin equivalents (HSEs) as a platform to characterize fibroblasts that have been derived from human embryonic stem (hES) cell. We characterized the phenotype and the secretion profile of two distinct hES-derived cell lines with properties of mesenchymal cells (EDK and H9-MSC) and compared their biological potential upon induction of differentiation to bone and fat and following their incorporation into the stromal compartment of engineered, HSEs. RESULTS: While both EDK and H9-MSC cell lines exhibited similar morphology and mesenchymal cell marker expression, they demonstrated distinct functional properties when incorporated into the stromal compartment of HSEs. EDK cells displayed characteristics of dermal fibroblasts that could support epithelial tissue development and enable re-epithelialization of wounds generated using a 3D tissue model of cutaneous wound healing, which was linked to elevated production of hepatocyte growth factor (HGF). Lentiviral shRNA-mediated knockdown of HGF resulted in a dramatic decrease of HGF secretion from EDK cells that led to a marked reduction in their ability to promote keratinocyte proliferation and re-epithelialization of cutaneous wounds. In contrast, H9-MSCs demonstrated features of mesenchymal stem cells (MSC) but not those of dermal fibroblasts, as they underwent multilineage differentiation in monolayer culture, but were unable to support epithelial tissue development and repair and produced significantly lower levels of HGF. CONCLUSIONS: Our findings demonstrate that hES-derived cells could be directed to specified and alternative mesenchymal cell fates whose function could be distinguished in engineered HSEs. Characterization of hES-derived mesenchymal cells in 3D, engineered HSEs demonstrates the utility of this tissue platform to predict the functional properties of hES-derived fibroblasts before their therapeutic transplantation.


Assuntos
Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Técnicas de Cultura de Células , Linhagem da Célula , Proliferação de Células , Fibroblastos/transplante , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Queratinócitos/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Engenharia Tecidual , Cicatrização
7.
J Cell Biochem ; 107(4): 706-13, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19415686

RESUMO

Mesenchymal stem cells (MSCs) respond to a variety of differentiation signal provided by their local environments. A large portion of these signals originate from the extracellular matrix (ECM). At the same time, MSCs secrete various matrix-altering agents, including proteases, that alter ECM-encoded differentiation signals. Here we investigated the interactions between MSC and ECM produced by endothelial cells (EC-matrix), focusing not only on the differentiation signals provided by EC-matrix, but also on MSC-alteration of these signals and the resultant affects on MSC differentiation. MSCs were cultured on EC-matrix modified in one of three distinct ways. First, MSCs cultured on native EC-matrix underwent endothelial cell (EC) differentiation early during the culture period and smooth muscle cell (SMC) differentiation at later time points. Second, MSCs cultured on crosslinked EC-matrix, which is resistant to MSC modification, differentiated towards an EC lineage only. Third, MSCs cultured on EC-matrix pre-modified by MSCs underwent SMC-differentiation only. These MSC-induced matrix alterations were found to deplete the factors responsible for EC-differentiation, yet activate the SMC-differentiation factors. In conclusion, our results demonstrate that the EC-matrix contains factors that support MSC differentiation into both ECs and SMCs, and that these factors are modified by MSC-secreted agents. By analyzing the framework by which EC-matrix regulates differentiation in MSCs, we have uncovered evidence of a feedback system in which MSCs are able to alter the very matrix signals acting upon them.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Endotélio Vascular/citologia , Matriz Extracelular/fisiologia , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Células , Linhagem Celular , Células Endoteliais/ultraestrutura , Retroalimentação Fisiológica , Humanos , Miócitos de Músculo Liso/citologia
8.
J Cell Biochem ; 107(4): 714-22, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19415687

RESUMO

Mesenchymal stem cells (MSCs) are thought to occupy a perivascular niche where they are exposed to signals originating from vascular cells. This study focused on the effects of endothelial cell (EC)-derived signals on MSC differentiation toward vascular cell lineages. Upon co-culture with two types of ECs, macrovascular (macro) ECs and microvascular (micro) ECs, the former caused MSCs to increase expression of both EC and smooth muscle cell (SMC) markers, while the latter induced expression of EC markers only. These marker changes in MSCs were linked to the extracellular matrixes secreted by the ECs (EC-matrix) rather than soluble EC-secreted factors. Beyond enhanced marker expression, EC-matrix also induced functional changes in MSCs indicative of development of a genuine vascular cell phenotype. These included enhanced incorporation into vessels and cytoskeletal localization of vascular SMC-specific contractile elements. The bioactivity of EC-matrix was sensitive to EDTA washes and required sulfated glycosaminoglycans. However, neither soluble VEGF nor substrate surfaces coated with fibronectin, collagen type IV, or laminin recreated the effects of EC-matrix on MSC vascular differentiation. In conclusion, these results identified EC-matrix as a critical regulator of vascular cell differentiation of MSCs. Elucidating these MSC-EC-matrix interactions and identifying the specific EC-matrix components involved will shed light on the perivascular signals seen by MSCs in vivo.


Assuntos
Comunicação Celular , Diferenciação Celular , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Células-Tronco Mesenquimais/citologia , Movimento Celular , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Nicho de Células-Tronco/citologia
9.
Tissue Eng Part A ; 14(10): 1615-27, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18759661

RESUMO

A mesenchymal stem cell (MSC)-seeded collagen gel under static or dynamic tension is a well-established model to study the potential of MSCs in regenerating a tendon- or ligament-like tissue. Using this model, upregulation of fibrillar collagen mRNA expression and protein production has been demonstrated in response to cyclic tensile mechanical stimulation. However, the mechanisms driving MSC tenogenesis (differentiation into tendon or ligament fibroblasts) have not been elucidated. This study investigated the mechanisms of tenogenesis of human bone marrow-derived MSCs in a dynamic, three-dimensional (3D) tissue-engineering model by investigating the effects of cyclic stretching on matrix production and gene expression of candidate tendon and ligament markers. The 3D MSC tenogenesis culture system upregulated scleraxis, but cyclic stretching was required to maintain expression of this putative tendon marker over time. Enhanced tendinous neo-tissue development demonstrated with extracellular matrix staining was largely due to changes in matrix deposition and remodeling activity under dynamic loading conditions, as evidenced by differential regulation of matrix metalloproteinases at a transcriptional level with minimal changes in collagen mRNA levels. Regulation of Wnt gene expression with cyclic stimulation suggested a similar role for Wnt4 versus Wnt5a in tenogenesis as in cartilage development. This first report of the potential involvement of matrix remodeling and Wnt signaling during tenogenesis of human MSCs in a dynamic, 3D tissue-engineering model provides insights into the mechanisms of tenogenesis in a mechanoactive environment and supports the therapeutic potential of adult stem cells.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Colágeno/genética , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/genética , Proteína Wnt4
10.
Dev Dyn ; 237(5): 1477-89, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18425852

RESUMO

Tendon is one of the least understood tissues of the musculoskeletal system in terms of development and morphogenesis. Collagen fibrillogenesis has been the most studied aspect of tendon development, focusing largely on the role of matrix molecules such as collagen type III and decorin. While involvement of matrix molecules in collagen fibrillogenesis during chick tendon development is well understood, the role of growth factors has yet to be elucidated. This work examines the expression patterns of transforming growth factor (TGF) -beta1, -beta2, and -beta3, and their receptors with respect to expression patterns of collagen type III, decorin, and fibronectin. We focus on the intermediate stages of tendon development in the chick embryo, a period during which the tendon micro- and macro-architecture are being established. Our findings demonstrate for the first time that TGF-beta1, -beta2, and -beta3 have distinct spatiotemporal developmental protein localization patterns in the developing tendon and strongly suggest that these isoforms have independent roles in tendon development.


Assuntos
Matriz Extracelular , Proteínas Serina-Treonina Quinases/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Tendões/embriologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Decorina , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteoglicanas/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Tendões/citologia , Tendões/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética
11.
Proc Natl Acad Sci U S A ; 103(24): 9250-5, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16754864

RESUMO

The loss of TGFbeta or its downstream mediator, Smad3, key players in tissue repair, accelerates closure of incisional wounds in mice. In contrast, we now report that excisional ear wounds in mice lacking Smad3 enlarge compared with wild-type controls resulting from changes in extracellular matrix molecules, which alter the mechanotransduction properties of these wounds. Specifically, levels of elastin and glycosoaminoglycans are increased, collagen fibers are more compactly organized, and matrix modulators like integrins, TGFbeta1, and matrix metalloproteinases (MMPs) are altered both basally and after wounding in Smad3 knockout mice. Mechanical testing of dorsal skin correlates these changes in matrix composition with functional parameters, specifically an increased elastic modulus, suggesting an imbalance of tissue forces. We propose that the altered mechanical elastic properties translate into a persistent retractile force that is opposed by decreased wound contractile forces contributing to the enlarging ear wound in Smad3 knockout mice. These studies highlight a previously undescribed role for Smad3 in the mechanotransduction of matrix unsupported ear wound closure.


Assuntos
Matriz Extracelular , Mecanotransdução Celular/fisiologia , Pele/metabolismo , Proteína Smad3/metabolismo , Cicatrização , Animais , Biomarcadores/metabolismo , Transplante de Medula Óssea , Células Cultivadas , Orelha Externa/metabolismo , Orelha Externa/patologia , Elasticidade , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Quinases/metabolismo , Receptores de Vitronectina/metabolismo , Pele/patologia , Proteína Smad3/genética , Estresse Mecânico
12.
Curr Opin Rheumatol ; 18(1): 64-73, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16344621

RESUMO

PURPOSE OF REVIEW: The prevalent nature of osteoarthritis, a cartilage degenerative disease that results in the erosion of joint surfaces and loss of mobility, underscores the importance of developing functional articular cartilage replacement. Recent research efforts have focused on tissue engineering as a promising approach for cartilage regeneration and repair. Tissue engineering is a multidisciplinary research area that incorporates both biological and engineering principles for the purpose of generating new, living tissues to replace the diseased/damaged tissue and restore tissue/organ function. This review surveys and highlights the current concepts and recent progress in cartilage tissue engineering, and discusses the challenges and potential of this rapidly advancing field of biomedical research. RECENT FINDINGS: Cartilage tissue engineering is critically dependent on selection of appropriate cells (differentiated or progenitor cells); fabrication and utilization of biocompatible and mechanically suitable scaffolds for cell delivery; stimulation with chondrogenically bioactive molecules introduced in the form of recombinant proteins or via gene transfer; and application of dynamic, mechanical loading regimens for conditioning of the engineered tissue constructs, including the design of specialized biomechanically active bioreactors. SUMMARY: Cell selection, scaffold design and biological stimulation remain the challenges of function tissue engineering. Successful regeneration or replacement of damaged or diseased cartilage will depend on future advances in our understanding of the biology of cartilage and stem cells and technological development in engineering.


Assuntos
Cartilagem/fisiologia , Regeneração , Engenharia Tecidual/métodos , Materiais Biocompatíveis/uso terapêutico , Reatores Biológicos , Linhagem Celular , Transplante de Células , Terapia Genética , Humanos , Osteoartrite/terapia , Transdução de Sinais , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA