Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6563, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323673

RESUMO

DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing of the RNA in the major groove of the DNA duplex have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit. Endogenous HIF1α-AS1 reduces the expression of numerous genes, including EPH Receptor A2 and Adrenomedullin through DNA:DNA:RNA triplex formation by acting as an adapter for the repressive human silencing hub complex (HUSH). Moreover, the oxygen-sensitive HIF1α-AS1 is down-regulated in pulmonary hypertension and loss-of-function approaches not only result in gene de-repression but also enhance angiogenic capacity. As exemplified here with HIF1α-AS1, DNA:DNA:RNA triplex formation is a functionally important mechanism of trans-acting gene expression control.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , DNA/genética , DNA/metabolismo , Pareamento de Bases , Oligonucleotídeos , Regulação Neoplásica da Expressão Gênica
2.
Nucleic Acids Res ; 50(14): 7889-7905, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819198

RESUMO

Gene expression is controlled in part by post-translational modifications of core histones. Methylation of lysine 4 of histone H3 (H3K4), associated with open chromatin and gene transcription, is catalyzed by type 2 lysine methyltransferase complexes that require WDR5, RBBP5, ASH2L and DPY30 as core subunits. Ash2l is essential during embryogenesis and for maintaining adult tissues. To expand on the mechanistic understanding of Ash2l, we generated mouse embryo fibroblasts (MEFs) with conditional Ash2l alleles. Upon loss of Ash2l, methylation of H3K4 and gene expression were downregulated, which correlated with inhibition of proliferation and cell cycle progression. Moreover, we observed induction of senescence concomitant with a set of downregulated signature genes but independent of SASP. Many of the signature genes are FoxM1 responsive. Indeed, exogenous FOXM1 was sufficient to delay senescence. Thus, although the loss of Ash2l in MEFs has broad and complex consequences, a distinct set of downregulated genes promotes senescence.


Assuntos
Proteínas de Ligação a DNA , Proteína de Leucina Linfoide-Mieloide , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
BMC Biol ; 20(1): 141, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705990

RESUMO

BACKGROUND: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). RESULTS: We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19-/- and 23-/- lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19-/- and rather increased in exon 23-/- lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A-/- iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23-/- iHPCs in a syngeneic competitive differentiation assay. CONCLUSIONS: Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23-/- iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Animais , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Epigênese Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos
4.
Leukemia ; 36(1): 80-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34131280

RESUMO

Assessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation (DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Mutação , Recidiva Local de Neoplasia/patologia , Neoplasia Residual/patologia , Humanos , Leucemia Mieloide Aguda/genética , Recidiva Local de Neoplasia/genética , Neoplasia Residual/genética , Prognóstico , Taxa de Sobrevida
5.
Commun Biol ; 4(1): 598, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011964

RESUMO

Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift.


Assuntos
Fator de Ligação a CCCTC/genética , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Deriva Genética , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Células Cultivadas , Cromatina/genética , Ilhas de CpG , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/citologia
6.
Clin Epigenetics ; 12(1): 125, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819411

RESUMO

BACKGROUND: Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS: In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION: Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.


Assuntos
Anemia Aplástica/sangue , Anemia Aplástica/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/sangue , Proteínas de Ligação a DNA/genética , Disceratose Congênita/sangue , Disceratose Congênita/genética , Histona Metiltransferases/sangue , Histona Metiltransferases/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Fenótipo , Telômero/metabolismo
7.
Sci Rep ; 9(1): 8262, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164666

RESUMO

Post-translational modifications of core histones participate in controlling the expression of genes. Methylation of lysine 4 of histone H3 (H3K4), together with acetylation of H3K27, is closely associated with open chromatin and gene transcription. H3K4 methylation is catalyzed by KMT2 lysine methyltransferases that include the mixed-lineage leukemia 1-4 (MLL1-4) and SET1A and B enzymes. For efficient catalysis, all six require a core complex of four proteins, WDR5, RBBP5, ASH2L, and DPY30. We report that targeted disruption of Ash2l in the murine hematopoietic system results in the death of the mice due to a rapid loss of mature hematopoietic cells. However, lin-Sca1+Kit+ (LSK) cells, which are highly enriched in hematopoietic stem and multi-potent progenitor cells, accumulated in the bone marrow. The loss of Ash2l resulted in global reduction of H3K4 methylation and deregulated gene expression, including down-regulation of many mitosis-associated genes. As a consequence, LSK cells accumulated in the G2-phase of the cell cycle and were unable to proliferate and differentiate. In conclusion, Ash2l is essential for balanced gene expression and for hematopoietic stem and multi-potent progenitor cell physiology.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Proliferação de Células/genética , Cromatina/genética , Regulação da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/genética , Metilação , Camundongos
8.
Life Sci Alliance ; 1(6): e201800153, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30582132

RESUMO

De novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing of DNMT3A has characteristic epigenetic and functional sequels. Specific DNMT3A transcripts were either down-regulated or overexpressed in human hematopoietic stem and progenitor cells, and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that, particularly, transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia expression of transcript 2 correlates with its in vitro DNA methylation and gene expression signatures and is associated with overall survival, indicating that DNMT3A variants also affect malignancies. Our results demonstrate that specific DNMT3A variants have a distinct epigenetic and functional impact. Particularly, DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in acute myeloid leukemia.

9.
Gut ; 66(3): 473-486, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27633923

RESUMO

OBJECTIVE: The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. DESIGN: We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. RESULTS: Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. CONCLUSIONS: Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.


Assuntos
Fibrose Cística/terapia , Modelos Animais de Doenças , Organoides/crescimento & desenvolvimento , Organoides/transplante , Pâncreas/citologia , RNA Mensageiro/uso terapêutico , Células Acinares/citologia , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Perfilação da Expressão Gênica , Terapia Genética , Humanos , Camundongos , Organoides/citologia , Organoides/metabolismo , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Ductos Pancreáticos/citologia , Fenótipo , Células-Tronco Pluripotentes
10.
Nucleic Acids Res ; 44(22): 10631-10643, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634931

RESUMO

There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA-DNA-DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.


Assuntos
Células-Tronco Mesenquimais/fisiologia , RNA Longo não Codificante/fisiologia , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , RNA Longo não Codificante/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA