Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Med ; 13(2): e7008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38334504

RESUMO

BACKGROUND: Studies on the correlation between high body mass index (BMI) and extended survival among patients receiving immune checkpoint inhibitors (ICIs) have been made, although findings have shown variability. Our research explored the phenomenon of the "obesity paradox" in patients with metastatic urothelial carcinoma (mUC) undergoing treatment with ICIs. MATERIALS AND METHODS: We conducted a retrospective analysis of patients diagnosed with mUC who received a minimum of one cycle of ICI treatment at two medical centers in Taiwan from September 2015 to January 2023. Features of patients' clinicopathologic factors, including age, sex, primary or metastatic location, treatment line, and BMI were examined. The primary outcome were overall survival (OS) and progression-free survival (PFS), which were assessed utilizing the Kaplan-Meier method. We employed the Cox-regression model to adjust for multiple covariates. RESULTS: A total of 215 patients were included, with 128 (59.5%) being male, and the median age was 70 years. In the obese group (BMI ≥25 kg/m2 ), patients demonstrated significantly better median OS compared to the non-obese group (BMI <25 kg/m2 ) (21.9 vs. 8.3 months; p = 0.021). However, there was no significant difference in median PFS between the high and low BMI groups (4.7 vs. 2.8 months; p = 0.16). Post-hoc subgroup revealed a survival benefit from ICI treatment in male patients within the BMI ≥25 kg/m2 group (HR 0.49, 95% CI 0.30-0.81, p = 0.005). CONCLUSION: Based on real-world data from the Asia-Pacific region, there appears to be a correlation between obesity and prolonged OS in patients receiving ICI treatment for mUC.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Masculino , Idoso , Feminino , Índice de Massa Corporal , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Retrospectivos , Obesidade/complicações , Obesidade/epidemiologia
2.
Phytomedicine ; 110: 154597, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603340

RESUMO

BACKGROUND: Retinoblastoma, the most common pediatric intraocular malignancy, can develop during embryogenesis, with most children being diagnosed at 3-4 years of age. Multimodal therapies are typically associated with high levels of cytotoxicity and side effects. Therefore, the development of novel treatments with minimal side effects is crucial. Magnolol has a significant anti-tumor effect on various cancers. However, its antitumor effect on retinoblastoma remains unclear. PURPOSE: The study aimed to determine the effects of magnolol on the regulation of EMT, migration, invasion, and cancer progression in retinoblastoma and the modulation of miR-200c-3p expression and the Wnt/ zinc finger E-box binding homeobox 1 (ZEB1)/E-cadherin axis in vivo and in vitro. METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay was used to evaluate magnolol-induced cell toxicity in the Y79 retinoblastoma cell line. Flow cytometry and immunostaining assays were performed to investigate the magnolol-regulated mitochondrial membrane potential and the intracellular and mitochondrial reactive oxygen species levels in Y79 retinoblastoma cells. Orthotopic and subcutaneous xenograft experiments were performed in eight-week-old male null mice to study retinoblastoma progression and metastasis. In situ hybridization and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays were performed to evaluate the level of the anti-cancer miRNA miR-200c-3p. The mRNA and protein levels of E-cadherin, ß-catenin, α-smooth muscle actin (α-SMA), fibronectin-1, and ZEB1 were analyzed using RT-qPCR, immunoblot, immunocytochemistry, and immunohistochemistry assays in vitro and in vivo. RESULTS: Magnolol increased E-cadherin levels and reduced the activation of the EMT signaling pathway, EMT, tumor growth, metastasis, and cancer progression in the Y79 retinoblastoma cell line as well as in the orthotopic and subcutaneous xenograft animal models. Furthermore, magnolol increased the expression of miR-200c-3p. Our results demonstrate that miRNA-200c-3p inhibits EMT progression through the Wnt16/ß-catenin/ZEB1/E-cadherin axis, and the ZEB1 silencing response shows that miR-200c-3p regulates ZEB1-mediated EMT in retinoblastoma. CONCLUSION: Magnolol has an antitumor effect by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma. The anti-tumor effect of magnolol by increasing E-cadherin and miRNA-200c-3p expression to regulate ZEB1-mediated EMT and cancer progression in retinoblastoma has been elucidated for the first time.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Animais , Camundongos , Humanos , Masculino , Transição Epitelial-Mesenquimal/genética , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Caderinas/metabolismo , Neoplasias da Retina/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
3.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335506

RESUMO

Four 1,4-bis((9H-carbazol-9-yl)methyl)benzene-containing polymers (PbCmB, P(bCmB-co-bTP), P(bCmB-co-dbBT), and P(bCmB-co-TF)) were electrosynthesized onto ITO transparent conductive glass and their spectral and electrochromic switching performances were characterized. The PbCmB film displayed four types of color variations (bright gray, dark gray, dark khaki, and dark olive green) from 0.0 to 1.2 V. P(bCmB-co-bTP) displayed a high transmittance variation (∆T = 39.56% at 685 nm) and a satisfactory coloration efficiency (η = 160.5 cm2∙C-1 at 685 nm). Dual-layer organic electrochromic devices (ECDs) were built using four bCmB-containing polycarbazoles and poly(3,4-ethylenedioxythiophene) (PEDOT) as anodes and a cathode, respectively. PbCmB/PEDOT ECD displayed gainsboro, dark gray, and bright slate gray colors at -0.4 V, 1.0 V, and 2.0 V, respectively. The P(bCmB-co-bTP)/PEDOT ECD showed a high ∆T (40.7% at 635 nm) and a high coloration efficiency (η = 428.4 cm2∙C-1 at 635 nm). The polycarbazole/PEDOT ECDs exhibited moderate open circuit memories and electrochemical redox stability. The characterized electrochromic properties depicted that the as-prepared polycarbazoles had a satisfactory application prospect as an electrode for the ECDs.

4.
Cells ; 9(8)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796743

RESUMO

Mitochondrial dysfunction is involved in the pathogenesis of atherosclerosis, the primary risk factor for ischemic stroke. This study aims to explore the role of mitochondrial genomic variations in ischemic stroke, and to uncover the nuclear genes involved in this relationship. Eight hundred and thirty Taiwanese patients with a history of ischemic stroke and 966 normal controls were genotyped for their mitochondrial haplogroup (Mthapg). Cytoplasmic hybrid cells (cybrids) harboring different Mthapgs were used to observe functional differences under hypoxia-ischemia. RNA sequencing (RNASeq) was conducted to identify the particularly elevated mRNA. The patient study identified an association between Mthapg F1 and risk of ischemic stroke (OR 1.72:1.27-2.34, p = 0.001). The cellular study further demonstrated an impeded induction of hypoxic inducible factor 1α in the Mthapg F1 cybrid after hypoxia-ischemia. Additionally, the study demonstrated that Mthapg F cybrids were associated with an altered mitochondrial function, including decreased oxygen consumption, higher mitochondrial ROS production, and lower mitochondrial membrane potential. Mthapg F cybrids were also noted to be prone to inflammation, with increased expression of several inflammatory cytokines and elevated matrix metalloproteinase 9. The RNASeq identified significantly elevated expressions of angiopoietin-like 4 in Mthapg F1 cybrids after hypoxia-ischemia. Our study demonstrates an association between Mthapg F and susceptibility to ischemic stroke.


Assuntos
Isquemia Encefálica/epidemiologia , AVC Isquêmico/epidemiologia , Trifosfato de Adenosina/metabolismo , Idoso , Proteína 4 Semelhante a Angiopoietina/sangue , Povo Asiático , Isquemia Encefálica/metabolismo , Células Cultivadas , Feminino , Haplótipos/genética , Humanos , AVC Isquêmico/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Análise de Sequência de RNA
5.
J Mol Biol ; 432(19): 5227-5243, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32710985

RESUMO

Rta of Epstein-Barr virus (EBV) is thought to be expressed only during the lytic cycle to promote the transcription of lytic genes. However, we found that Rta is expressed in EBV-infected B cells during viral latency, at levels detectable by immunoblot analysis. Latent Rta expression cannot be attributed to spontaneous lytic activation, as we observed that more than 90% of Akata, P3HR1, and 721 cells latently infected by EBV express Rta. We further found that Rta is sequestered in the nucleolus during EBV latency through its interaction with MCRS2, a nucleolar protein. When Rta is sequestered in the nucleolus, it no longer activates RNA polymerase II-driven transcription, thus explaining why Rta expression during latency does not transactivate EBV lytic genes. Additional experiments showed that Rta can bind to 18S rRNA and become incorporated into ribosomes, and a transient transfection experiment showed that Rta promotes translation from an mRNA reporter. These findings reveal that Rta has novel functions beyond transcriptional activation during EBV latency and may have interesting implications for the concept of EBV latency.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Proteínas Imediatamente Precoces/genética , Transativadores/genética , Latência Viral , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Células HEK293 , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo
6.
Cells ; 9(6)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575577

RESUMO

Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.


Assuntos
Adipogenia/fisiologia , Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/fisiologia
7.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627291

RESUMO

Glucocorticoid excess escalates osteoclastic resorption, accelerating bone mass loss and microarchitecture damage, which ramps up osteoporosis development. MicroRNA-29a (miR-29a) regulates osteoblast and chondrocyte function; however, the action of miR-29a to osteoclastic activity in the glucocorticoid-induced osteoporotic bone remains elusive. In this study, we showed that transgenic mice overexpressing an miR-29a precursor driven by phosphoglycerate kinase exhibited a minor response to glucocorticoid-mediated bone mineral density loss, cortical bone porosity and overproduction of serum resorption markers C-teleopeptide of type I collagen and tartrate-resistant acid phosphatase 5b levels. miR-29a overexpression compromised trabecular bone erosion and excessive osteoclast number histopathology in glucocorticoid-treated skeletal tissue. Ex vivo, the glucocorticoid-provoked osteoblast formation and osteoclastogenic markers (NFATc1, MMP9, V-ATPase, carbonic anhydrase II and cathepsin K) along with F-actin ring development and pit formation of primary bone-marrow macrophages were downregulated in miR-29a transgenic mice. Mechanistically, tumor necrosis factor superfamily member 13b (TNFSF13b) participated in the glucocorticoid-induced osteoclast formation. miR-29a decreased the suppressor of cytokine signaling 2 (SOCS2) enrichment in the TNFSF13b promoter and downregulated the cytokine production. In vitro, forced miR-29a expression and SOCS2 knockdown attenuated the glucocorticoid-induced TNFSF13b expression in osteoblasts. miR-29a wards off glucocorticoid-mediated excessive bone resorption by repressing the TNFSF13b modulation of osteoclastic activity. This study sheds new light onto the immune-regulatory actions of miR-29a protection against glucocorticoid-mediated osteoporosis.


Assuntos
Fator Ativador de Células B/metabolismo , Reabsorção Óssea/genética , MicroRNAs/fisiologia , Osteogênese/genética , Animais , Fator Ativador de Células B/genética , Osso Esponjoso/patologia , Diferenciação Celular , Imuno-Histoquímica , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoclastos/patologia , Transdução de Sinais
8.
Cell Death Dis ; 10(10): 705, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31543513

RESUMO

Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C-X-C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3'-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.


Assuntos
Quimiocina CXCL12/genética , MicroRNAs/metabolismo , Osteoclastos/metabolismo , Osteoporose/genética , Ligante RANK/genética , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Fenômenos Biomecânicos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Osteoclastos/citologia , Ovariectomia , Ligante RANK/metabolismo , Fatores de Transcrição de p300-CBP/genética
9.
Int J Mol Sci ; 18(6)2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590414

RESUMO

Mitochondria consume O2 to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ°) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.


Assuntos
DNA Mitocondrial/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biomarcadores , Hipóxia Celular/genética , Linhagem Celular Tumoral , Citosol/metabolismo , Dinaminas , Metabolismo Energético/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Dosagem de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Potencial da Membrana Mitocondrial , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Interferência de RNA
10.
Polymers (Basel) ; 9(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30965819

RESUMO

Poly(1,3,5-tris(N-carbazolyl)benzene) (PtnCz) and three copolymers based on 1,3,5-tris(N-carbazolyl)benzene (tnCz) and 2,2'-bithiophene (bTp) were electrochemically synthesized. The anodic P(tnCz1-bTp2) film with a tnCz/bTp feed molar ratio of 1/2 showed four colors (light orange at 0.0 V, yellowish-orange at 0.7 V, yellowish-green at 0.8 V, and blue at 1.1 V) from the neutral state to oxidized states. The optical contrast (∆T%) and coloration efficiency (η) of the P(tnCz1-bTp2) film were measured as 48% and 112 cm²âˆ™C-¹, respectively, at 696 nm. Electrochromic devices (ECDs) based on PtnCz, P(tnCz1-bTp1), P(tnCz1-bTp2), P(tnCz1-bTp4), and PbTp films as anodic polymer layers and poly(3,4-dihydro-3,3-dimethyl-2H-thieno[3,4-b-1,4]dioxepin) (PProDOT-Me2) as cathodic polymer layers were assembled. P(tnCz1-bTp2)/PProDOT-Me2 ECD showed three various colors (saffron yellow, yellowish-blue, and dark blue) at potentials ranging from -0.3 to 1.5 V. In addition, P(tnCz1-bTp2)/PProDOT-Me2 ECD showed a high ∆T% value (40% at 630 nm) and a high coloration efficiency (519 cm²âˆ™C-¹ at 630 nm).

11.
Polymers (Basel) ; 8(10)2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30974647

RESUMO

In this study, copolymers based on 1,3-bis(carbazol-9-yl)benzene (BCz) and three 3,4-ethylenedioxythiophene derivatives (3,4-ethylenedioxythiophene (EDOT), 3,4-(2,2-dimethylpropylenedioxy)thiophene (ProDOT-Me2), and 3,4-ethylenedithiathiophene (EDTT)) were electrochemically synthesized and their electrochemical and electrochromic properties were characterized. The anodic copolymer P(BCz-co-ProDOT) with BCz/ProDOT-Me2 = 1/1 feed molar ratio showed high optical contrast (ΔT%) and coloring efficiency (η), measured as 52.5% and 153.5 cm²âˆ™C-1 at 748 nm, respectively. Electrochromic devices (ECDs) based on P(BCz-co-EDOT), P(BCz-co-ProDOT), and P(BCz-co-EDTT) as anodic polymer layers, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodic polymer layer were fabricated. P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD showed three different colors (light yellow, yellowish-blue, and dark blue) at different applied potentials. In addition, the highest optical contrast (ΔT%) of P(BCz-co-ProDOT)/triple-layer PEDOT-PSS ECD was found to be 41% at 642 nm and the coloration efficiency was calculated to be 416.5 cm²âˆ™C-1 at 642 nm. All ECDs showed satisfactory optical memories and electrochemical cyclic stability.

12.
J Gen Virol ; 96(9): 2855-2866, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26297580

RESUMO

During its lytic cycle, Epstein-Barr virus (EBV) expresses Rta, a factor encoded by BRLF1 that activates the transcription of viral lytic genes. We found that upstream stimulating factor (USF) binds to E1, one of the five E boxes located at - 79 in the BRLF1 promoter (Rp), to activate BRLF1 transcription. Furthermore, Rta was shown to interact with USF1 in coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays, and confocal laser-scanning microscopy further confirmed that these two proteins colocalize in the nucleus. Rta was also found to bind with the E1 sequence in a biotin-labelled E1 probe, but only in the presence of USF1, suggesting that these two proteins likely form a complex on E1. We subsequently constructed p188mSZ, a reporter plasmid that contained the sequence from - 188 to +5 in Rp, within which the Sp1 site and Zta response element were mutated. In EBV-negative Akata cells cotransfected with p188mSZ and plasmids expressing USF1 and Rta, synergistic activation of Rp transcription was observed. However, after mutating the E1 sequence in p188mSZ, USF1 and Rta were no longer able to transactivate Rp, indicating that Rta autoregulates BRLF1 transcription via its interaction with USF1 on E1. This study showed that pUSF1 transfection after EBV lytic induction in P3HR1 cells increases Rta expression, indicating that USF1 activates Rta expression after the virus enters the lytic cycle. Together, these results reveal a novel mechanism by which USF interacts with Rta to promote viral lytic development, and provide additional insight into the viral-host interactions of EBV.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Proteínas Imediatamente Precoces/genética , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Fatores Estimuladores Upstream/metabolismo , Sequência de Bases , Sítios de Ligação , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/química , Herpesvirus Humano 4/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/química , Fatores Estimuladores Upstream/genética
13.
J Virol ; 89(17): 8922-31, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085145

RESUMO

The Epstein-Barr virus (EBV) capsid contains a major capsid protein, VCA; two minor capsid proteins, BDLF1 and BORF1; and a small capsid protein, BFRF3. During the lytic cycle, these capsid proteins are synthesized and imported into the host nucleus for capsid assembly. This study finds that EBV capsid proteins colocalize with promyelocytic leukemia (PML) nuclear bodies (NBs) in P3HR1 cells during the viral lytic cycle, appearing as nuclear speckles under a confocal laser scanning microscope. In a glutathione S-transferase pulldown study, we show that BORF1 interacts with PML-NBs in vitro. BORF1 also colocalizes with PML-NBs in EBV-negative Akata cells after transfection and is responsible for bringing VCA and the VCA-BFRF3 complex from the cytoplasm to PML-NBs in the nucleus. Furthermore, BDLF1 is dispersed throughout the cell when expressed alone but colocalizes with PML-NBs when BORF1 is also present in the cell. In addition, this study finds that knockdown of PML expression by short hairpin RNA does not influence the intracellular levels of capsid proteins but reduces the number of viral particles produced by P3HR1 cells. Together, these results demonstrate that BORF1 plays a critical role in bringing capsid proteins to PML-NBs, which may likely be the assembly sites of EBV capsids. The mechanisms elucidated in this study are critical to understanding the process of EBV capsid assembly. IMPORTANCE Capsid assembly is an important event during the Epstein-Barr virus (EBV) lytic cycle, as this process is required for the production of virions. In this study, confocal microscopy revealed that the EBV capsid protein BORF1 interacts with promyelocytic leukemia (PML) nuclear bodies (NBs) in the host nucleus and is responsible for transporting the other EBV capsid proteins, including VCA, BDLF1, and BFRF3, to these subnuclear locations prior to initiation of capsid assembly. This study also found that knockdown of PML expression by short hairpin RNA significantly reduces EBV capsid assembly capabilities. This enhanced understanding of capsid assembly offers potential for the development of novel antiviral strategies and therapies that can prevent the propagation and spread of EBV.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Antígenos Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas de Neoplasias/metabolismo , Antígenos Virais/biossíntese , Antígenos Virais/genética , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Leucemia Promielocítica Aguda/virologia , Microscopia Confocal , Proteínas Nucleares/metabolismo , Transporte Proteico/genética , Interferência de RNA , RNA Interferente Pequeno
14.
Mol Cells ; 31(6): 547-52, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21533551

RESUMO

MCRS2 is an oncoprotein that is sequestered in the nucleolus. When in the nucleolus, it promotes the transcription of the rRNA gene. MCRS2 also brings proteins into the nucleolus to change their function. This study analyzes the sequence of MCRS2 and determines that the nuclear localization signal, which has the sequence KRKK, is situated between amino acids 66 and 69. Meanwhile, MCRS2 contains a bipartite nucleolar localization signal, which comprises a KKSK motif, located between amino acids 133 and 136, and a downstream 152-amino acid region, from amino acid 314 to 465. The results of this study are important to understand the function of MCRS2.


Assuntos
Nucléolo Celular/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Sinais de Localização Nuclear/genética , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência
15.
Int J Mol Sci ; 12(12): 8750-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272102

RESUMO

This work includes specific basic characterization of synthesized glycine-based Ionic Liquid (IL) [QuatGly-OEt][EtOSO(3)] by NMR, elementary analysis and water content. Thermophysical properties such as density, ρ, viscosity, η, refractive index, n, and conductivity, κ, for the binary mixture of [QuatGly-OEt][EtOSO(3)] with poly(ethylene glycol) (PEG) [M(w) = 200] are measured over the whole composition range. The temperature dependence of density and dynamic viscosity for neat [QuatGly-OEt][EtOSO(3)] and its binary mixture can be described by an empirical polynomial equation and by the Vogel-Tammann-Fucher (VTF) equation, respectively. The thermal expansion coefficient of the ILs is ascertained using the experimental density results, and the excess volume expansivity is evaluated. The negative values of excess molar volume for the mixture indicate the ion-dipole interactions and packing between IL and PEG oligomer. The results of binary excess property (V(m) (E) ) and deviations (Δη, Δ(x)n, Δ(Ψ)n, Δ(x)R, and Δ(Ψ)R) are discussed in terms of molecular interactions and molecular structures in the binary mixture.


Assuntos
Glicina/análogos & derivados , Líquidos Iônicos/química , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Glicina/síntese química , Glicina/química , Compostos de Amônio Quaternário/síntese química , Temperatura , Viscosidade
16.
J Mol Biol ; 379(2): 231-42, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18455188

RESUMO

Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation.


Assuntos
Herpesvirus Humano 4/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Proteínas Virais/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 4/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transativadores/genética , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Virais/genética , Ativação Viral , Proteína ran de Ligação ao GTP/genética
17.
J Biol Chem ; 279(37): 38803-12, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15229220

RESUMO

Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes and the lytic cycle. This work identifies Ubc9 and PIAS1 as binding partners of Rta in a yeast two-hybrid screen. These bindings are verified by glutathione S-transferase pull-down assay, coimmunoprecipitation, and confocal microscopy. The interactions appear to cause Rta sumoylation, because not only can Rta be sumoylated in vitro but also sumoylated Rta can be detected in P3HR1 cells following lytic induction and in 293T cells after transfecting plasmids that express Rta and SUMO-1. Moreover, PIAS1 stimulates conjugation of SUMO-1 to Rta, thus acting as an E3 ligase. Furthermore, transfecting plasmids that express Ubc9, PIAS1, and SUMO-1 increases the capacity of Rta to transactivate the promoter that includes an Rta response element, indicating that the modification by SUMO-1 increases the transactivation activity of Rta. This study reveals that Rta is sumoylated at the Lys-19, Lys-213, and Lys-517 residues and that SUMO-1 conjugation at the Lys-19 residue is crucial for enhancing the transactivation activity of Rta. These results indicate that sumoylation of Rta may be important in EBV lytic activation.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteína SUMO-1/metabolismo , Transativadores/metabolismo , Sítios de Ligação , Linhagem Celular , Citoplasma/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glutationa Transferase/metabolismo , Herpesvirus Humano 4/metabolismo , Humanos , Immunoblotting , Células Jurkat , Lisina/química , Microscopia Confocal , Microscopia de Fluorescência , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Ativação Transcricional , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA