Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361041

RESUMO

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
2.
Adv Healthc Mater ; 12(14): e2202224, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36479976

RESUMO

Metastasis is the leading cause of breast cancer-related deaths and is often driven by invasion and cancer-stem like cells (CSCs). Both the CSC phenotype and invasion are associated with increased hyaluronic acid (HA) production. How these independent observations are connected, and which role metabolism plays in this process, remains unclear due to the lack of convergent approaches integrating engineered model systems, computational tools, and cancer biology. Using microfluidic invasion models, metabolomics, computational flux balance analysis, and bioinformatic analysis of patient data, the functional links between the stem-like, invasive, and metabolic phenotype of breast cancer cells as a function of HA biosynthesis are investigated. These results suggest that CSCs are more invasive than non-CSCs and that broad metabolic changes caused by overproduction of HA play a role in this process. Accordingly, overexpression of hyaluronic acid synthases (HAS) 2 or 3 induces a metabolic phenotype that promotes cancer cell stemness and invasion in vitro and upregulates a transcriptomic signature predictive of increased invasion and worse patient survival. This study suggests that HA overproduction leads to metabolic adaptations to satisfy the energy demands for 3D invasion of breast CSCs highlighting the importance of engineered model systems and multidisciplinary approaches in cancer research.


Assuntos
Ácido Hialurônico , Neoplasias , Humanos , Ácido Hialurônico/farmacologia , Neoplasias/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
3.
Annu Rev Cell Dev Biol ; 37: 257-283, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613816

RESUMO

Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.


Assuntos
Glicocálix , Membrana Celular/metabolismo , Glicocálix/química , Glicocálix/metabolismo , Glicoproteínas , Humanos , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo
4.
ACS Sens ; 5(6): 1555-1566, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32337979

RESUMO

Precise pH measurements in the immediate environment of receptors is essential for elucidating the mechanisms through which local pH changes associated with diseased phenotypes manifest into aberrant receptor function. However, current pH sensors lack the ability to localize and target specific receptor molecules required to make these measurements. Herein we present the Litmus-body, our recombinant protein-based pH sensor, which through fusion to an anti-IgG nanobody is capable of piggybacking on IgG antibodies for molecular targeting to specific proteins on the cell surface. By normalizing a pH-dependent green fluorescent protein to a long Stokes shift red fluorophore or fluorescent protein, we readily report pH independent of sensor concentration using a single 488 nm excitation. Our Litmus-body showed excellent responsiveness in solution, with a greater than 50-fold change across the regime of physiological pH. The sensor was further validated for use on live cells and shown to be specific to the protein of interest. In complex with our Litmus-body, cetuximab therapeutic antibody retained its functionality in binding and inhibiting ligand interaction of its target epidermal growth factor receptor (EGFR), triggering receptor-mediated endocytosis that allowed tracking of local pH from the cell surface through the endocytic pathway.


Assuntos
Endocitose , Corantes Fluorescentes , Cetuximab , Concentração de Íons de Hidrogênio , Ligantes
5.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31056282

RESUMO

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Assuntos
Forma Celular , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animais , Linhagem Celular , Matriz Extracelular/genética , Glicocálix/genética , Cavalos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genética
6.
Sci Rep ; 6: 24231, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071814

RESUMO

Colorectal cancer screening using conventional colonoscopy lacks molecular information and can miss dysplastic lesions. We tested here the ability of fluorescently labelled lectins to distinguish dysplasia from normal tissue when sprayed on to the luminal surface epithelium of freshly resected colon tissue from the Apc(min) mouse and when applied to fixed human colorectal tissue sections. Wheat germ agglutinin (WGA) showed significantly decreased binding to adenomas in the mouse tissue and in sections of human colon from 47 patients. Changes in WGA binding to the human surface epithelium allowed regions containing normal epithelium (NE) or hyperplastic polyps (HP) to be distinguished from regions containing low-grade dysplasia (LGD), high-grade dysplasia (HGD) or carcinoma (C), with 81% sensitivity, 87% specificity and 93% positive predictive value (PPV). Helix pomatia agglutinin (HGA) distinguished epithelial regions containing NE from regions containing HP, LGD, HGD or C, with 89% sensitivity, 87% specificity and 97% PPV. The decreased binding of WGA and HPA to the luminal surface epithelium in human dysplasia suggests that these lectins may enable more sensitive detection of disease in the clinic using fluorescence colonoscopy.


Assuntos
Adenoma/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Corantes Fluorescentes , Lectinas/metabolismo , Adenoma/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma/patologia , Estudos de Casos e Controles , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA