Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Radiother Oncol ; 181: 109528, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773828

RESUMO

BACKGROUND AND PURPOSE: Hippocampal avoidance whole brain radiotherapy (HA-WBRT) is effective for controlling disease and preserving neuro-cognitive function for brain metastases. However, contouring and planning of HA-WBRT is complex and time-consuming. We designed and evaluated a pipeline using deep learning tools for a fully automated treatment planning workflow to generate HA-WBRT radiotherapy plans. MATERIALS AND METHODS: We retrospectively collected 50 adult patients who received HA-WBRT. Using RTOG- 0933 clinical trial protocol guidelines, all organs-at-risk (OARs) and the clinical target volume (CTV) were contoured by experienced radiation oncologists. A deep-learning segmentation model was designed and trained. Next, we developed a volumetric-modulated arc therapy (VMAT) auto-planning algorithm for 30 Gy in 10 fractions. Automated segmentations were evaluated using the Dice similarity coefficient (DSC) and 95th-percentile Hausdorff distance (95 % HD). Auto-plans were evaluated by the percentage of PTV volume that receives 30 Gy (V30Gy), conformity index (CI), and homogeneity index (HI) of planning target volume (PTV) and the minimum dose (D100%) and maximum dose (Dmax) for the hippocampus, Dmax for the lens, eyes, optic nerve, brain stem, and chiasm. RESULTS: We developed a deep-learning segmentation model and an auto-planning script. For the 10 cases in the independent test set, the overall average DSC and 95 % HD of contours were greater than 0.8 and less than 7 mm, respectively. All auto-plans met the RTOG- 0933 criteria. The HA-WBRT plan automatically created time was about 10 min. CONCLUSIONS: An artificial intelligence (AI)-assisted pipeline using deep learning tools can rapidly and accurately generate clinically acceptable HA-WBRT plans with minimal manual intervention and increase efficiency of this treatment for brain metastases.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Adulto , Humanos , Inteligência Artificial , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Hipocampo , Tratamentos com Preservação do Órgão , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
2.
Invest Radiol ; 57(10): 655-663, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069439

RESUMO

OBJECTIVES: In an effort to exploit the elevated need for phospholipids displayed by cancer cells relative to normal cells, we have developed tumor-targeted alkylphosphocholines (APCs) as broad-spectrum cancer imaging and therapy agents. Radioactive APC analogs have exhibited selective uptake and prolonged tumor retention in over 50 cancer types in preclinical models, as well as over 15 cancer types in over a dozen clinical trials. To push the structural limits of this platform, we recently added a chelating moiety capable of binding gadolinium and many other metals for cancer-targeted magnetic resonance imaging (MRI), positron emission tomography imaging, and targeted radionuclide therapy. The aim of this work was to synthesize, characterize, and validate the tumor selectivity of a new broad-spectrum, tumor-targeted, macrocyclic MRI chelate, Gd-NM600, in xenograft and orthotopic tumor models. A secondary aim was to identify and track the in vivo chemical speciation and spatial localization of this new chelate Gd-NM600 in order to assess its Gd deposition properties. MATERIALS AND METHODS: T1 relaxivities of Gd-NM600 were characterized in water and plasma at 1.5 T and 3.0 T. Tumor uptake and subcellular localization studies were performed using transmission electron microscopy. We imaged 8 different preclinical models of human cancer over time and compared the T1-weighted imaging results to that of a commercial macrocyclic Gd chelate, Gd-DOTA. Finally, matrix-assisted laser desorption and ionization-mass spectrometry imaging was used to characterize and map the tissue distribution of the chemical species of Gd-NM600. RESULTS: Gd-NM600 exhibits high T1 relaxivity (approximately 16.4 s-1/mM at 1.5 T), excellent tumor uptake (3.95 %ID/g at 48 hours), prolonged tumor retention (7 days), and MRI conspicuity. Moreover, minimal tumor uptake saturability of Gd-NM600 was observed. Broad-spectrum tumor-specific uptake was demonstrated in 8 different human cancer models. Cancer cell uptake of Gd-NM600 via endosomal internalization and processing was revealed with transmission electron microscopy. Importantly, tissue mass spectrometry imaging successfully interrogated the spatial localization and chemical speciation of Gd compounds and also identified breakdown products of Gd species. CONCLUSIONS: We have introduced a new macrocyclic cancer-targeted Gd chelate that achieves broad-spectrum tumor uptake and prolonged retention. Furthermore, we have demonstrated in vivo stability of Gd-NM600 by ultrahigh resolution MS tissue imaging. A tumor-targeted contrast agent coupled with the enhanced imaging resolution of MRI relative to positron emission tomography may transform oncologic imaging.


Assuntos
Meios de Contraste , Neoplasias , Quelantes , Meios de Contraste/química , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem
4.
Neuromolecular Med ; 24(1): 41-49, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677796

RESUMO

Malignant brain tumors are among the most intractable cancers, including malignancies such as glioblastoma, diffuse midline glioma, medulloblastoma, and ependymoma. Unfortunately, treatment options for these brain tumors have been inadequate and complex, leading to poor prognoses and creating a need for new treatment modalities. Aberrant epigenetics define these types of tumors, with underlying changes in DNA methylation, histone modifications, chromatin structure and noncoding RNAs. Epigenetic-targeted therapies are an alternative that have the potential to reverse the epigenetic deregulation underpinning brain malignancies. Various drugs targeting epigenetic regulators have shown promise in preclinical and clinical testing. In this review, we highlight some of the recent emerging epigenetic targeted therapies for brain tumors being evaluated in the discovery phase and in clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Metilação de DNA , Epigênese Genética , Epigenômica , Glioma/tratamento farmacológico , Glioma/genética , Humanos
5.
Brain Res ; 1776: 147752, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906547

RESUMO

Glioblastoma (GB) is highly invasive and resistant to multimodal treatment partly due to distorted vasculature and exacerbated inflammation. The aggressiveness of brain tumors may be attributed to the dysregulated release of angiogenic and inflammatory factors. The glycoprotein pentraxin-3 (PTX3) is correlated with the severity of some cancers. However, the mechanism responsible for the invasive oncogenic role of PTX3 in GB malignancy remains unclear. In this study, we examined the role of PTX3 in GB growth, angiogenesis, and invasion using in vitro and in vivo GB models, proteomic profiling, molecular and biochemical approaches. Under in vitro conditions, PTX3 over-expression in U87 cells correlated with cell cycle progression, increased migratory potential, and proliferation under hypoxic conditions. Conditioned media containing PTX3 enhanced the angiogenic potential of endothelial cells. While silencing of PTX3 by siRNA decreased the proliferation, migration, and angiogenic potential of U87 cells in vitro. Importantly, PTX3 over-expression increased tumor growth, angiogenesis, and invasion in an orthotopic mouse model. Higher levels of PTX3 in these tumors were associated with the upregulation of inflammatory and angiogenic markers including interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), but decreased levels of thrombospondin-1, an anti-angiogenic factor. Mechanistically, exogenous production of PTX3 triggered an IKK/NFκB signaling pathway that enhances the expression of the motility genes AHGEF7 and Rac1. Taken together, PTX3 expression is dysregulated in GB. PTX3 may augment invasion through enhanced angiogenesis in the GB microenvironment through the IL8-VEGF axis. Thus, PTX3 may represent a potential therapeutic target to mitigate the aggressive behavior of gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína C-Reativa/metabolismo , Glioblastoma/metabolismo , Interleucina-8/metabolismo , Invasividade Neoplásica/genética , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteína C-Reativa/genética , Linhagem Celular , Glioblastoma/genética , Glioblastoma/patologia , Camundongos , Invasividade Neoplásica/patologia , Neurônios/metabolismo , Neurônios/patologia , Componente Amiloide P Sérico/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-34950570

RESUMO

Functional resonance magnetic imaging (fMRI) allows for identification of eloquent cortex in pre-treatment planning. Previous studies have shown a correlation among lesion to activation distance (LAD) measures and morbidity and mortality. This study investigates the relationship between LAD, well-established language centers (Wernicke's and Broca's), and language performance measures. We included a sample population of brain tumor patients that received language fMRI (verbal fluency and sentence verification) for pre-treatment assessment (n = 51). LAD to the nearest language area was measured and divided into groups ≤ 10 mm and > 10 mm. Verbal fluency scores were compared between these groups. Additionally, patients were divided into similar groups based on LAD to either Broca's or Wernicke's areas, and the verbal fluency scores and sentence verification accuracy (n = 29) were subsequently compared between groups. Brain tumor patients with LAD ≤ 10 mm to either language area had significantly lower verbal fluency scores (p = 0.028). The difference in verbal fluency scores between groups with LAD ≤ 10 mm and > 10 mm to Wernicke's area trends toward significance (p = 0.067). The sentence verification accuracy was significantly lower in patients with LAD ≤ 10 mm to either language area (p = 0.039). These findings suggest that there exists a significant relationship between LAD to language centers and measures; greater language deficits are seen when LAD ≤ 10 mm.

7.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547073

RESUMO

Focused ultrasound (FUS) in the presence of microbubbles can transiently open the blood-brain barrier (BBB) to increase therapeutic agent penetration at the targeted brain site to benefit recurrent glioblastoma (rGBM) treatment. This study is a dose-escalating pilot trial using a device combining neuronavigation and a manually operated frameless FUS system to treat rGBM patients. The safety and feasibility were established, while a dose-dependent BBB-opening effect was observed, which reverted to baseline within 24 hours after treatment. No immunological response was observed clinically under the applied FUS level in humans; however, selecting a higher level in animals resulted in prolonged immunostimulation, as confirmed preclinically by the recruitment of lymphocytes into the tumor microenvironment (TME) in a rat glioma model. Our findings provide preliminary evidence of FUS-induced immune modulation as an additional therapeutic benefit by converting the immunosuppressive TME into an immunostimulatory TME via a higher but safe FUS dosage.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Barreira Hematoencefálica , Encéfalo , Neoplasias Encefálicas/terapia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Imunização , Imageamento por Ressonância Magnética , Microbolhas , Neuronavegação/métodos , Ratos , Microambiente Tumoral
8.
Bioengineering (Basel) ; 8(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494220

RESUMO

Recent research has highlighted the importance of key tumor microenvironment features, notably the collagen-rich extracellular matrix (ECM) in characterizing tumor invasion and progression. This led to great interest from both basic researchers and clinicians, including pathologists, to include collagen fiber evaluation as part of the investigation of cancer development and progression. Fibrillar collagen is the most abundant in the normal extracellular matrix, and was revealed to be upregulated in many cancers. Recent studies suggested an emerging theme across multiple cancer types in which specific collagen fiber organization patterns differ between benign and malignant tissue and also appear to be associated with disease stage, prognosis, treatment response, and other clinical features. There is great potential for developing image-based collagen fiber biomarkers for clinical applications, but its adoption in standard clinical practice is dependent on further translational and clinical evaluations. Here, we offer a comprehensive review of the current literature of fibrillar collagen structure and organization as a candidate cancer biomarker, and new perspectives on the challenges and next steps for researchers and clinicians seeking to exploit this information in biomedical research and clinical workflows.

9.
Technol Cancer Res Treat ; 19: 1533033820960748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32945237

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and most frequently diagnosed malignant human glioma. Despite the best available standard of care (surgery, radiation, and chemotherapy), the median survival of GBM patients is less than 2 years. Many recent studies have indicated that microRNAs (miRNAs) are important for promoting or reducing/limiting GBM growth. In particular, we previously showed that GBMs express decreased levels of miR-100 relative to control tissue and that restoring miR-100 expression reduced GBM tumorigenicity by modulating SMRT/NCOR2 (Nuclear Receptor Corepressor 2). Here, we demonstrate that miR-100 overexpression decreases expression of the stem cell markers, nestin and L1CAM, and decreases proliferation of GBM tumor-initiating cells (cancer stem cells). We further show that miR-100-mediated anti-tumorigenic activity limits the activity of SMARCA5 and its downstream target STAT3 (known as mTOR-STAT3-Notch pathway). In addition, we report ErbB3 (Her3) as a putative miR-100 target, including inhibition of its downstream AKT and ERK signaling pathways.


Assuntos
Adenosina Trifosfatases/genética , Proteínas Cromossômicas não Histona/genética , Glioblastoma/genética , MicroRNAs/genética , Receptor ErbB-3/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Células-Tronco Neoplásicas , Fator de Transcrição STAT3/genética , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32690669

RESUMO

BACKGROUND: Immune checkpoint inhibition (ICI) alone is not efficacious for a large number of patients with melanoma brain metastases. We previously established an in situ vaccination (ISV) regimen combining radiation and immunocytokine to enhance response to ICIs. Here, we tested whether ISV inhibits the development of brain metastases in a murine melanoma model. METHODS: B78 (GD2+) melanoma 'primary' tumors were engrafted on the right flank of C57BL/6 mice. After 3-4 weeks, primary tumors were treated with ISV (radiation (12 Gy, day 1), α-GD2 immunocytokine (hu14.18-IL2, days 6-10)) and ICI (α-CTLA-4, days 3, 6, 9). Complete response (CR) was defined as no residual tumor observed at treatment day 90. Mice with CR were tested for immune memory by re-engraftment with B78 in the left flank and then the brain. To test ISV efficacy against metastases, tumors were also engrafted in the left flank and brain of previously untreated mice. Tumors were analyzed by quantitative reverse transcription-PCR, immunohistochemistry, flow cytometry and multiplex cytokine assay. RESULTS: ISV+α-CTLA-4 resulted in immune memory and rejection of B78 engraftment in the brain in 11 of 12 mice. When B78 was engrafted in brain prior to treatment, ISV+α-CTLA-4 increased survival compared with ICI alone. ISV+α-CTLA-4 eradicated left flank tumors but did not elicit CR at brain sites when tumor cells were engrafted in brain prior to ISV. ISV+α-CTLA-4 increased CD8+ and CD4+ T cells in flank and brain tumors compared with untreated mice. Among ISV + α-CTLA-4 treated mice, left flank tumors showed increased CD8+ infiltration and CD8+:FOXP3+ ratio compared with brain tumors. Flank and brain tumors showed minimal differences in expression of immune checkpoint receptors/ligands or Mhc-1. Cytokine productions were similar in left flank and brain tumors in untreated mice. Following ISV+α-CTLA-4, production of immune-stimulatory cytokines was greater in left flank compared with brain tumor grafts. CONCLUSION: ISV augmented response to ICIs in murine melanoma at brain and extracranial tumor sites. Although baseline tumor-immune microenvironments were similar at brain and extracranial tumor sites, response to ISV+α-CTLA-4 was divergent with reduced infiltration and activation of immune cells in brain tumors. Additional therapies may be needed for effective antitumor immune response against melanoma brain metastases.


Assuntos
Neoplasias Encefálicas/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma Experimental/complicações , Vacinação/métodos , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos
11.
Ann Transl Med ; 8(11): 673, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32617293

RESUMO

BACKGROUND: Blood-brain barrier (BBB) limits over 95% of drugs' penetration into brain, which has been a major obstacle in treating patients with glioblastoma. Transient BBB opening in glioblastoma (GBM) is feasible by combining focused ultrasound (FUS) with systemic infusion of microbubbles (MB). NaviFUS, a novel device that integrates neuronavigation and FUS-MB system, is able to intraoperatively direct the ultrasound energy precisely and repeatedly at targeted CNS areas. This clinical trial evaluates the safety and feasibility of NaviFUS in recurrent glioblastoma patients. METHODS: The study is a first-in-human, prospective, open-label, single-center, single-arm, dose escalation phase 1 clinical trial. A total of 6 patients will be enrolled. Patients will be enrolled into three groups, each group receiving an escalating dose of FUS energy (acoustic power is 4, 8, and 12 W) with concomitant systemic microbubbles (0.1 mL/kg) applied 1 week before surgical resection. RESULTS: Dynamic contrast-enhanced MRI will be obtained immediately and 24 hours after FUS procedures, while heavily T2-weighted sequence will be obtained to evaluate for any micro-hemorrhages. We anticipate that there will be minimal side effects associated with NaviFUS-mediated transient BBB opening. CONCLUSIONS: Obtained results will support a planned phase 2 trial to evaluate whether NaviFUS can effectively enhance the delivery of chemotherapeutic agents and improve tumor control.

12.
Oncotarget ; 11(17): 1531-1544, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32391122

RESUMO

New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 µmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of in vitro cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.

13.
Mol Imaging Biol ; 22(2): 434-443, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31183841

RESUMO

PURPOSE: There is a continuous search for imaging techniques with high sensitivity and specificity for brain tumors. Positron emission tomography (PET) imaging has shown promise, though many PET agents either have a low tumor specificity or impractical physical half-lives. [124I]CLR1404 is a small molecule alkylphosphocholine analogue that is thought to bind to plasma membrane lipid rafts and has shown high tumor-to-background ratios (TBR) in a previous pilot study in brain tumor patients. This study attempts to define the clinical value of [124I]CLR1404 PET/CT (aka CLR124). PROCEDURES: Adult patients with new or suspected recurrence of high-grade primary or metastatic brain tumors (N = 27) were injected with [124I]CLR1404 followed by PET/CT at 6, 24, and 48 h. Standard uptake values (SUV) and TBR values were calculated for all time points. Uptake of [124I]CLR1404 was qualitatively assessed, compared with magnetic resonance imaging (MRI), and correlated with clinical outcome. Final diagnosis (N = 25) was established based on surgically resected tissue or long-term follow-up. RESULTS: Positive uptake with high TBR was detected in all but one patient with a final diagnosis of primary/recurrent brain tumor (12/13) and in less than half of patients with treatment-related changes (5/12). Concordance between [124I]CLR1404 uptake and contrast enhancement on MRI was seen in < 40 %, with no concordance between T2-hyperintensities and uptake. No significant difference in overall outcome was found between patients with and without [124I]CLR1404 uptake. CONCLUSIONS: The uptake pattern in these patients suggests a very high sensitivity of [124I]CLR1404 PET/CT for diagnosing tumor tissue; however, tumor specificity needs to be further defined. Relative lack of concordance with standard MRI characteristics suggests that [124I]CLR1404 PET/CT provides additional information about brain tumors compared to MRI alone, potentially improving clinical decision-making.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Radioisótopos do Iodo , Iodobenzenos , Microdomínios da Membrana/química , Metástase Neoplásica , Éteres Fosfolipídicos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/secundário , Tomada de Decisões , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico
15.
Mol Pharm ; 16(8): 3350-3360, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31082240

RESUMO

Alkylphosphocholine (APC) analogs are a novel class of broad-spectrum tumor-targeting agents that can be used for both diagnosis and treatment of cancer. The potential for clinical translation for APC analogs will strongly depend on their pharmacokinetic (PK) profiles. The aim of this work was to understand how the chemical structures of various APC analogs impact binding and PK. To achieve this aim, we performed in silico docking analysis, in vitro and in vivo partitioning experiments, and in vivo PK studies. Our results have identified 7 potential high-affinity binding sites of these compounds on human serum albumin (HSA) and suggest that the size of the functional group directly influences the albumin binding, partitioning, and PK. Namely, the bulkier the functional groups, the weaker the agent binds to albumin, the more the agent partitions onto lipoproteins, and the less time the agent spends in circulation. The results of these experiments provide novel molecular insights into the binding, partitioning, and PK of this class of compounds and similar molecules as well as suggest pharmacological strategies to alter their PK profiles. Importantly, our methodology may provide a way to design better drugs by better characterizing the PK profile for lead compound optimization.


Assuntos
Antineoplásicos/farmacocinética , Desenho de Fármacos , Simulação de Acoplamento Molecular , Fosforilcolina/farmacocinética , Albumina Sérica Humana/metabolismo , Animais , Antineoplásicos/química , Humanos , Lipoproteínas/metabolismo , Camundongos , Camundongos Nus , Modelos Biológicos , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Fosforilcolina/análogos & derivados , Fosforilcolina/química
16.
Sci Adv ; 5(5): eaau4245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31106264

RESUMO

Diseases that lead to blood-brain barrier (BBB) disruption will pathologically expose normally inaccessible brain extracellular matrix (ECM) to circulating blood components. Therefore, we hypothesized that brain ECM-targeting moieties could specifically target the disrupted BBB and potentially deliver therapies. Variable lymphocyte receptors (VLRs) that preferentially associate with brain ECM were identified from an immune VLR library via yeast surface display biopanning coupled with a moderate throughput ECM screen. Brain ECM binding of VLR clones to murine and human brain tissue sections was confirmed. After systemic administration, P1C10, the lead brain ECM-targeting VLR candidate, specifically accumulated in brains with mannitol-disrupted BBB and at disrupted BBB regions in two different intracranial glioblastoma models. We also demonstrate P1C10's ability to deliver doxorubicin-loaded liposomes, leading to significantly improved survival in glioblastoma-bearing mice. Thus, VLRs can be used to selectively target pathologically exposed brain ECM and deliver drug payloads.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Glioblastoma/tratamento farmacológico , Linfócitos/metabolismo , Células 3T3 , Animais , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Cinética , Lipossomos/farmacologia , Manitol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Coelhos , Resultado do Tratamento
18.
Neurosurgery ; 84(3): E189-E191, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629207

RESUMO

QUESTION: Do steroids improve neurological symptoms and/or quality of life in patients with metastatic brain tumors compared to supportive care only or other treatment options? If steroids are given, what dose should be used? TARGET POPULATION: These recommendations apply to adults diagnosed with brain metastases. RECOMMENDATIONS: STEROID THERAPY VERSUS NO STEROID THERAPYAsymptomatic brain metastases patients without mass effectInsufficient evidence exists to make a treatment recommendation for this clinical scenario.Brain metastases patients with mild symptoms related to mass effect Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. It is recommended for patients who are symptomatic from metastatic disease to the brain that a starting dose of 4 to 8 mg/d of dexamethasone be considered.Brain metastases patients with moderate to severe symptoms related to mass effect Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. If patients exhibit severe symptoms consistent with increased intracranial pressure, it is recommended that higher doses such as 16 mg/d or more be considered. CHOICE OF STEROID: Level 3: If corticosteroids are given, dexamethasone is the best drug choice given the available evidence.Duration of Corticosteroid Administration Level 3: Corticosteroids, if given, should be tapered as rapidly as possible but no faster than clinically tolerated, based upon an individualized treatment regimen and a full understanding of the long-term sequelae of corticosteroid therapy.Given the very limited number of studies (2) which met the eligibility criteria for the systematic review, these are the only recommendations that can be offered based on this methodology.The full guideline can be found at https://www.cns.org/guidelines/guidelines-treatment-adults-metastatic-brain-tumors/chapter_7.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Medicina Baseada em Evidências/normas , Neurocirurgiões/normas , Guias de Prática Clínica como Assunto/normas , Esteroides/administração & dosagem , Corticosteroides/uso terapêutico , Adulto , Neoplasias Encefálicas/cirurgia , Congressos como Assunto/normas , Feminino , Humanos , Masculino , Qualidade de Vida
19.
Neurosurgery ; 84(3): E152-E155, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629227

RESUMO

Please see the full-text version of this guideline https://www.cns.org/guidelines/guidelines-treatment-adults-metastatic-brain-tumors/chapter_2) for the target population of each recommendation listed below. SURGERY FOR METASTATIC BRAIN TUMORS AT NEW DIAGNOSIS QUESTION: Should patients with newly diagnosed metastatic brain tumors undergo surgery, stereotactic radiosurgery (SRS), or whole brain radiotherapy (WBRT)? RECOMMENDATIONS: Level 1: Surgery + WBRT is recommended as first-line treatment in patients with single brain metastases with favorable performance status and limited extracranial disease to extend overall survival, median survival, and local control. Level 3: Surgery plus SRS is recommended to provide survival benefit in patients with metastatic brain tumors Level 3: Multimodal treatments including either surgery + WBRT + SRS boost or surgery + WBRT are recommended as alternatives to WBRT + SRS in terms of providing overall survival and local control benefits. SURGERY AND RADIATION FOR METASTATIC BRAIN TUMORS QUESTION: Should patients with newly diagnosed metastatic brain tumors undergo surgical resection followed by WBRT, SRS, or another combination of these modalities? RECOMMENDATIONS: Level 1: Surgery + WBRT is recommended as superior treatment to WBRT alone in patients with single brain metastases. Level 3: Surgery + SRS is recommended as an alternative to treatment with SRS alone to benefit overall survival. Level 3: It is recommended that SRS alone be considered equivalent to surgery + WBRT. SURGERY FOR RECURRENT METASTATIC BRAIN TUMORS QUESTION: Should patients with recurrent metastatic brain tumors undergo surgical resection? RECOMMENDATIONS: Level 3: Craniotomy is recommended as a treatment for intracranial recurrence after initial surgery or SRS. SURGICAL TECHNIQUE AND RECURRENCE QUESTION A: Does the surgical technique (en bloc resection or piecemeal resection) affect recurrence? RECOMMENDATION: Level 3: En bloc tumor resection, as opposed to piecemeal resection, is recommended to decrease the risk of postoperative leptomeningeal disease when resecting single brain metastases. QUESTION B: Does the extent of surgical resection (gross total resection or subtotal resection) affect recurrence? RECOMMENDATION: Level 3: Gross total resection is recommended over subtotal resection in recursive partitioning analysis class I patients to improve overall survival and prolong time to recurrence. The full guideline can be found at https://www.cns.org/guidelines/guidelines-treatment-adults-metastatic-brain-tumors/chapter_2.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Neurocirurgiões/normas , Guias de Prática Clínica como Assunto/normas , Adulto , Terapia Combinada/métodos , Terapia Combinada/normas , Congressos como Assunto/normas , Irradiação Craniana/métodos , Irradiação Craniana/normas , Gerenciamento Clínico , Feminino , Humanos , Masculino , Radiocirurgia/métodos , Radiocirurgia/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA