Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 547: 66-76, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29470948

RESUMO

Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a biologically active membrane phospholipid that is essential for the growth and survival of all eukaryotic cells. We describe a new method that directly measures PIP3 and describe the HPLC separation and measurement of the positional isomers of phosphatidylinositol bisphosphate, PI(3,5)P2, PI(3,4)P2 and PI(4,5)P2. Mass spectrometric analyses were performed online using ultra-high performance liquid chromatography (UHPLC)-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the negative multiple-reaction monitoring (MRM) modes. Rapid separation of PIP3 from PI, phosphatidylinositol phosphate (PIP) and PIP2 was accomplished by C18 reverse phase chromatography with the addition of the ion pairing reagents diisopropylethanolamine (DiiPEA) and ethylenediamine tetraacetic acid tetrasodium salt dihydrate (EDTA) to the samples and mobile phase with a total run time, including equilibration, of 12 min. Importantly, these chromatography conditions result in no carryover of PIP, PIP2, and PIP3 between samples. To validate the new method, U87MG cancer cells were serum starved and treated with PDGF to stimulate PIP3 biosynthesis in the presence or absence of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Results generated with the LC/MS method were in excellent agreement with results generated using [33P] phosphate radiolabeled U87MG cells and anion exchange chromatography analysis, a well validated method for measuring PIP3. To demonstrate the usefulness of the new method, we generated reproducible IC50 data for several well-characterized PI3K small molecule inhibitors using a U87MG cell-based assay as well as showing PIP3 can be measured from additional cancer cell lines. Together, our results demonstrate this novel method is sensitive, reproducible and can be used to directly measure PIP3 without radiolabeling or complex lipid derivatization.


Assuntos
Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos
2.
Mol Cancer Ther ; 16(12): 2677-2688, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054982

RESUMO

NAMPT, an enzyme essential for NAD+ biosynthesis, has been extensively studied as an anticancer target for developing potential novel therapeutics. Several NAMPT inhibitors have been discovered, some of which have been subjected to clinical investigations. Yet, the on-target hematological and retinal toxicities have hampered their clinical development. In this study, we report the discovery of a unique NAMPT inhibitor, LSN3154567. This molecule is highly selective and has a potent and broad spectrum of anticancer activity. Its inhibitory activity can be rescued with nicotinic acid (NA) against the cell lines proficient, but not those deficient in NAPRT1, essential for converting NA to NAD+ LSN3154567 also exhibits robust efficacy in multiple tumor models deficient in NAPRT1. Importantly, this molecule when coadministered with NA does not cause observable retinal and hematological toxicities in the rodents, yet still retains robust efficacy. Thus, LSN3154567 has the potential to be further developed clinically into a novel cancer therapeutic. Mol Cancer Ther; 16(12); 2677-88. ©2017 AACR.


Assuntos
Citocinas/antagonistas & inibidores , Niacina/uso terapêutico , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Humanos , Camundongos , Niacina/farmacologia , Epitélio Pigmentado da Retina/patologia
3.
Hepatology ; 64(6): 2089-2102, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27642075

RESUMO

Serine palmitoyltransferase is the key enzyme in sphingolipid biosynthesis. Mice lacking serine palmitoyltransferase are embryonic lethal. We prepared liver-specific mice deficient in the serine palmitoyltransferase long chain base subunit 2 gene using an albumin-cyclization recombination approach and found that the deficient mice have severe jaundice. Moreover, the deficiency impairs hepatocyte polarity, attenuates liver regeneration after hepatectomy, and promotes tumorigenesis. Importantly, we show that the deficiency significantly reduces sphingomyelin but not other sphingolipids in hepatocyte plasma membrane; greatly reduces cadherin, the major protein in adherens junctions, on the membrane; and greatly induces cadherin phosphorylation, an indication of its degradation. The deficiency affects cellular distribution of ß-catenin, the central component of the canonical Wnt pathway. Furthermore, such a defect can be partially corrected by sphingomyelin supplementation in vivo and in vitro. CONCLUSION: The plasma membrane sphingomyelin level is one of the key factors in regulating hepatocyte polarity and tumorigenesis. (Hepatology 2016;64:2089-2102).


Assuntos
Junções Aderentes/fisiologia , Carcinogênese , Fígado/enzimologia , Serina C-Palmitoiltransferase/deficiência , Fatores Etários , Animais , Camundongos
4.
J Biol Chem ; 291(14): 7651-60, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828064

RESUMO

Lysophosphatidylcholine acyltransferase 3 (Lpcat3) is involved in phosphatidylcholine remodeling in the small intestine and liver. We investigated lipid metabolism in inducible intestine-specific and liver-specificLpcat3gene knock-out mice. We producedLpcat3-Flox/villin-Cre-ER(T2)mice, which were treated with tamoxifen (at days 1, 3, 5, and 7), to deleteLpcat3specifically in the small intestine. At day 9 after the treatment, we found that Lpcat3 deficiency in enterocytes significantly reduced polyunsaturated phosphatidylcholines in the enterocyte plasma membrane and reduced Niemann-Pick C1-like 1 (NPC1L1), CD36, ATP-binding cassette transporter 1 (ABCA1), and ABCG8 levels on the membrane, thus significantly reducing lipid absorption, cholesterol secretion through apoB-dependent and apoB-independent pathways, and plasma triglyceride, cholesterol, and phospholipid levels, as well as body weight. Moreover, Lpcat3 deficiency does not cause significant lipid accumulation in the small intestine. We also utilized adenovirus-associated virus-Cre to depleteLpcat3in the liver. We found that liver deficiency only reduces plasma triglyceride levels but not other lipid levels. Furthermore, there is no significant lipid accumulation in the liver. Importantly, small intestine Lpcat3 deficiency has a much bigger effect on plasma lipid levels than that of liver deficiency. Thus, inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/deficiência , Membrana Celular/metabolismo , Enterócitos/metabolismo , Intestino Delgado/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Membrana Celular/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos
5.
J Clin Endocrinol Metab ; 101(1): 176-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26574956

RESUMO

CONTEXT: Strong evidence suggests that ectopic fat rather than fat mass per se drives risk for type 2 diabetes. Nonetheless, biomarkers of ectopic fat have gone unexplored. OBJECTIVE: To determine the utility of serum lipidomics to predict ectopic lipid deposition. DESIGN: Cross-sectional. SETTING: The Clinical Translational Research Center at the University of Colorado Anschutz Medical Campus. PARTICIPANTS: Endurance-trained athletes (n = 15, 41 ± 0.9 y old; body mass index 24 ± 0.6 kg/m(2)) and obese people with or without type 2 diabetes (n = 29, 42 ± 1.4 y old; body mass index 32 ± 2.5 kg/m(2)). INTERVENTION: Blood sampling and skeletal muscle biopsy. MAIN OUTCOME MEASURES: Multivariable models determined the ability of serum lipids to predict intramuscular (im) lipid accumulation of triacylglycerol (TAG), diacylglycerol (DAG), and ceramide (liquid chromatography tandem mass spectroscopy). RESULTS: Among people with obesity, serum ganglioside C22:0 and lactosylceramide C14:0 predicted muscle TAG (overall model R(2) = 0.48), whereas serum DAG C36:1 and free fatty acid (FFA) C18:4 were strong predictors of muscle DAG (overall model R(2) = 0.77), as were serum TAG C58:5, FFA C14:2 and C14:3, phosphotidylcholine C38:1, and cholesterol ester C24:1 to predict muscle ceramide (overall model R(2) = 0.85). Among endurance-trained athletes, serum FFA C14:1 and sphingosine were significant predictors of muscle TAG (overall model R(2) = 0.81), whereas no models could predict intramuscular DAG or ceramide in this group. CONCLUSIONS: Different serum lipids predict intramuscular TAG accumulation in obese people vs athletes. The ability of serum lipidomics to predict intramuscular DAG and ceramide in insulin-resistant humans may prove a new biomarker to determine risk for diabetes.


Assuntos
Tecido Adiposo , Coristoma/metabolismo , Atletas , Biomarcadores , Índice de Massa Corporal , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Resistência à Insulina/genética , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Metabolômica , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Resistência Física , Adulto Jovem
6.
J Biol Chem ; 290(25): 15812-15824, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25944913

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) has been extensively studied due to its essential role in NAD(+) biosynthesis in cancer cells and the prospect of developing novel therapeutics. To understand how NAMPT regulates cellular metabolism, we have shown that the treatment with FK866, a specific NAMPT inhibitor, leads to attenuation of glycolysis by blocking the glyceraldehyde 3-phosphate dehydrogenase step (Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., Roth, K., Zhai, Y., Huss, K., Kuo, M. S., Gillig, J., Parthasarathy, S., Burkholder, T. P., Smith, M. C., Geeganage, S., and Zhao, G. (2013) Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD(+) biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500-3511). Due to technical limitations, we failed to separate isotopomers of phosphorylated sugars. In this study, we developed an enabling LC-MS methodology. Using this, we confirmed the previous findings and also showed that NAMPT inhibition led to accumulation of fructose 1-phosphate and sedoheptulose 1-phosphate but not glucose 6-phosphate, fructose 6-phosphate, and sedoheptulose 7-phosphate as previously thought. To investigate the metabolic basis of the metabolite formation, we carried out biochemical and cellular studies and established the following. First, glucose-labeling studies indicated that fructose 1-phosphate was derived from dihydroxyacetone phosphate and glyceraldehyde, and sedoheptulose 1-phosphate was derived from dihydroxyacetone phosphate and erythrose via an aldolase reaction. Second, biochemical studies showed that aldolase indeed catalyzed these reactions. Third, glyceraldehyde- and erythrose-labeling studies showed increased incorporation of corresponding labels into fructose 1-phosphate and sedoheptulose 1-phosphate in FK866-treated cells. Fourth, NAMPT inhibition led to increased glyceraldehyde and erythrose levels in the cell. Finally, glucose-labeling studies showed accumulated fructose 1,6-bisphosphate in FK866-treated cells mainly derived from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Taken together, this study shows that NAMPT inhibition leads to attenuation of glycolysis, resulting in further perturbation of carbohydrate metabolism in cancer cells. The potential clinical implications of these findings are also discussed.


Assuntos
Metabolismo dos Carboidratos , Citocinas/metabolismo , NAD/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfatos Açúcares/metabolismo , Acrilamidas/farmacologia , Citocinas/antagonistas & inibidores , Citocinas/genética , Inibidores Enzimáticos/farmacologia , Humanos , Espectrometria de Massas , NAD/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Piperidinas/farmacologia , Fosfatos Açúcares/genética
7.
CNS Neurol Disord Drug Targets ; 14(5): 612-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25921737

RESUMO

Transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory protein (TARP) γ-8 is an auxiliary protein associated with some AMPA receptors. Most strikingly, AMPA receptors associated with this TARP have a relatively high localization in the hippocampus. TARP γ-8 also modifies the pharmacology and trafficking of AMPA receptors. However, to date there is little understanding of the biological significance of this auxiliary protein. In the present set of studies we provide a characterization of the differential pharmacology and behavioral consequences of deletion of TARP γ-8 by comparing the wild type (WT) and γ-8 -/- (knock-out, KO) mouse. KO mice were mildly hyperactive in a locomotor arena but not in other environments compared to WT mice. Additionally, the KO mice demonstrated enhanced locomotor stimulatory effects of both d-amphetamine and phencyclidine. Marble-burying and digging behaviors were dramatically reduced in KO mice. In another assay that can detect anxiety-like phenotypes, the elevated plus maze, no differences were observed in overall movement or open arm entries. In the forced-swim assay, KO mice displayed decreases in immobility time like the antidepressant imipramine and the AMPA receptor potentiator, LY392098. In KO mice, the antidepressant-like effects of LY392098 were prevented whereas the effects of imipramine were unaffected. Convulsions were induced by pentylenetetrazole, N-methyl-D-aspartate, and by kainic acid. However, in KO mice, kainic acid produced less tonic convulsions and lethality. KO mice had reduced levels of norepinephrine in hippocampus and cerebellum but not in hypothalamus or prefrontal cortex, decreased levels of cAMP in hippocampus, and increased levels of acetylcholine in the hypothalamus and prefrontal cortex. KO mice displayed decreased turnover of dopamine and increased histamine turnover in multiple brain areas In contrast, serotonin and its metabolites were not significantly affected by deletion of the γ-8 protein. Of a large panel of plasma lipids, only two monoacylglycerols (1OG and 2OG) were marginally but nonsignificantly altered in WT vs KO mice. Overall, the data suggest genetic inactivation of this specific population of AMPA receptors results in modest changes in behavior characterized by a mild hyperactivity which is condition dependent and a marked reduction in digging and burying behaviors. Despite deletion of TARP γ-8, chemoconvulsants were still active. Consistent with their predicted pharmacological actions, the convulsant effects of kainate and the antidepressant-like effects of an AMPA receptor potentiator (both acting upon AMPA receptors) were reduced or absent in KO mice.


Assuntos
Temperatura Corporal/genética , Encéfalo/metabolismo , Canais de Cálcio/deficiência , Hipercinese/genética , Atividade Motora/genética , Receptores de AMPA/metabolismo , Acetilcolina/metabolismo , Anfetaminas/farmacologia , Animais , Monoaminas Biogênicas/metabolismo , Canais de Cálcio/genética , Estimulantes do Sistema Nervoso Central/farmacologia , AMP Cíclico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/fisiologia , Histamina/metabolismo , Lipídeos/sangue , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Pentilenotetrazol , Fenciclidina/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/genética , Sulfonamidas/farmacologia , Natação/psicologia , Tiofenos/farmacologia , Fatores de Tempo
8.
Arterioscler Thromb Vasc Biol ; 35(2): 316-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25477345

RESUMO

OBJECTIVE: Phospholipid transfer protein (PLTP) is highly expressed in adipose tissues. Thus, the effect of adipose tissue PLTP on plasma lipoprotein metabolism was examined. APPROACH AND RESULTS: We crossed PLTP-Flox-ΔNeo and adipocyte protein 2 (aP2)-Cre recombinase (Cre) transgenic mice to create PLTP-Flox-ΔNeo/aP2-Cre mice that have a 90 and a 60% reduction in PLTP mRNA in adipose tissue and macrophages, respectively. PLTP ablation resulted in a significant reduction in plasma PLTP activity (22%), high-density lipoprotein-cholesterol (21%), high-density lipoprotein-phospholipid (20%), and apolipoprotein A-I (33%) levels, but had no effect on nonhigh-density lipoprotein levels in comparison with those of PLTP-Flox-ΔNeo controls. To eliminate possible effects of PLTP ablation by macrophages, we lethally irradiated PLTP-Flox-ΔNeo/aP2-Cre mice and PLTP-Flox-ΔNeo mice, and then transplanted wild-type mouse bone marrow into them to create wild-type→PLTP-Flox-ΔNeo/aP2-Cre and wild-type→PLTP-Flox-ΔNeo mice. Thus, we constructed a mouse model (wild-type→PLTP-Flox-ΔNeo/aP2-Cre) with PLTP deficiency in adipocytes but not in macrophages. These knockout mice also showed significant decreases in plasma PLTP activity (19%) and cholesterol (18%), phospholipid (17%), and apolipoprotein A-I (26%) levels. To further investigate the mechanisms behind the reduction in plasma apolipoprotein A-I and high-density lipoprotein lipids, we measured apolipoprotein A-I-mediated cholesterol efflux in adipose tissue explants and found that endogenous and exogenous PLTP significantly increased cholesterol efflux from the explants. CONCLUSIONS: Adipocyte PLTP plays a small but significant role in plasma PLTP activity and promotes cholesterol efflux from adipose tissues.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Lipoproteínas HDL/sangue , Proteínas de Transferência de Fosfolipídeos/metabolismo , Tecido Adiposo/citologia , Animais , Apolipoproteína A-I/sangue , Transplante de Medula Óssea , Células Cultivadas , Colesterol/sangue , Proteínas de Ligação a Ácido Graxo/genética , Genótipo , Integrases/genética , Macrófagos/metabolismo , Camundongos Knockout , Fenótipo , Proteínas de Transferência de Fosfolipídeos/deficiência , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/sangue , Fatores de Tempo , Técnicas de Cultura de Tecidos
9.
PLoS One ; 9(12): e114019, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486521

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer) and HCT-116 (colorectal cancer) cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA), and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC)-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.


Assuntos
Metaboloma , Metabolômica , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Análise por Conglomerados , Creatina/metabolismo , Glicólise , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Nicotinamida Fosforribosiltransferase/metabolismo , Via de Pentose Fosfato , Purinas/metabolismo , Pirimidinas/metabolismo
10.
Anal Biochem ; 465: 134-47, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25102203

RESUMO

The tricarboxylic acid (TCA) cycle is an interface among glycolysis, lipid metabolism, and amino acid metabolism. Increasing interest in cancer metabolism has created a demand for rapid and sensitive methods for quantifying the TCA cycle intermediates and related organic acids. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify the TCA cycle intermediates in a 96-well format after O-benzylhydroxylamine (O-BHA) derivatization under aqueous conditions. This method was validated for quantitation of all common TCA cycle intermediates with good sensitivity, including α-ketoglutarate, malate, fumarate, succinate, 2-hydroxyglutarate, citrate, oxaloacetate, pyruvate, isocitrate, and lactate using a 8-min run time in cancer cells and tissues. The method was used to detect and quantify changes in metabolite levels in cancer cells and tumor tissues treated with a pharmacological inhibitor of nicotinamide phosphoribosyl transferase (NAMPT). This method is rapid, sensitive, and reproducible, and it can be used to assess metabolic changes in cancer cells and tumor samples.


Assuntos
Ciclo do Ácido Cítrico , Hidroxilaminas/química , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Ácidos Tricarboxílicos/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Ácidos Tricarboxílicos/análise , Ácidos Tricarboxílicos/química
11.
Anal Biochem ; 462: 44-50, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24959941

RESUMO

Aldosterone plays a key role in the pathogenesis of hypertension, congestive heart failure, and chronic kidney disease. Aldosterone biosynthesis involves three membrane-bound enzymes: aldosterone synthase, adrenodoxin, and adrenodoxin reductase. Here, we report the development of a mass spectrometry-based high-throughput whole cell-based assay for aldosterone synthesis. A human adrenal carcinoma cell line (H295R) overexpressing human aldosterone synthase cDNA was established. The production of aldosterone in these cells was initiated with the addition of 11-deoxycorticosterone, the immediate substrate of aldosterone synthase. An automatic liquid handler was used to gently distribute cells uniformly to well plates. The adaption of a second automated liquid handling system to extract aldosterone from the cell culture medium into organic solvent enabled the development of 96- and 384-well plate formats for this cellular assay. A high-performance liquid chromatography-tandem mass spectrometry method was established for the detection of aldosterone. Production of aldosterone was linear with time and saturable with increasing substrate concentration. The assay was highly reproducible with an overall average Z' value=0.49. This high-throughput assay would enable high-throughput screening for inhibitors of aldosterone biosynthesis.


Assuntos
Citocromo P-450 CYP11B2/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas em Tandem , Aldosterona/biossíntese , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP11B2/genética , Avaliação Pré-Clínica de Medicamentos , Humanos
12.
Diabetes ; 63(11): 3815-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24917574

RESUMO

Obesity-associated low-grade inflammation in metabolically relevant tissues contributes to insulin resistance. We recently reported monocyte/macrophage infiltration in mouse and human skeletal muscles. However, the molecular triggers of this infiltration are unknown, and the role of muscle cells in this context is poorly understood. Animal studies are not amenable to the specific investigation of this vectorial cellular communication. Using cell cultures, we investigated the crosstalk between myotubes and monocytes exposed to physiological levels of saturated and unsaturated fatty acids. Media from L6 myotubes treated with palmitate-but not palmitoleate-induced THP1 monocyte migration across transwells. Palmitate activated the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in myotubes and elevated cytokine expression, but the monocyte chemoattracting agent was not a polypeptide. Instead, nucleotide degradation eliminated the chemoattracting properties of the myotube-conditioned media. Moreover, palmitate-induced expression and activity of pannexin-3 channels in myotubes were mediated by TLR4-NF-κB, and TLR4-NF-κB inhibition or pannexin-3 knockdown prevented monocyte chemoattraction. In mice, the expression of pannexin channels increased in adipose tissue and skeletal muscle in response to high-fat feeding. These findings identify pannexins as new targets of saturated fatty acid-induced inflammation in myotubes, and point to nucleotides as possible mediators of immune cell chemoattraction toward muscle in the context of obesity.


Assuntos
Conexinas/metabolismo , Monócitos/metabolismo , Nucleotídeos/metabolismo , Palmitatos/farmacologia , Animais , Conexinas/genética , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 33(7): 1513-20, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640498

RESUMO

OBJECTIVE: Sphingolipid de novo biosynthesis is related to nonalcoholic fatty liver disease or hepatic steatosis. However, the mechanism is still unclear. Sphingomyelin synthase (SMS), using ceramide as one of the substrates to produce sphingomyelin, sits at the crossroads of sphingolipid biosynthesis. SMS has 2 isoforms: SMS1 and SMS2. SMS2 is the major isoform in liver. APPROACH AND RESULTS: To investigate the relationship between liver SMS2 activity-mediated sphingolipid changes and hepatic steatosis, we used 2 mouse models: Sms2 liver-specific transgenic and Sms2 knockout mice. We found that Sms2 liver-specific transgenic livers have lower ceramide and higher sphingomyelin, whereas Sms2 knockout livers have higher ceramide and lower sphingomyelin. We also found that liver Sms2 overexpression promoted fatty acid uptake and liver steatosis, whereas Sms2 deficiency had an opposite effect in comparison with their respective controls. Importantly, the exogenous ceramide supplementation to Huh7 cells, a human hepatoma cell line, reduced the expression of peroxisome proliferator-activated receptor γ2 and its target genes, Cd36 and Fsp27. Peroxisome proliferator-activated receptor γ reporter analysis confirmed this phenomenon. Furthermore, peroxisome proliferator-activated receptor γ antagonist treatment significantly decreased triglyceride accumulation in Sms2 liver-specific transgenic liver. CONCLUSIONS: We attributed these effects to ceramide that can suppress peroxisome proliferator-activated receptor γ2, thus reducing the expression of Cd36 and Fsp27 and reducing liver steatosis. After all, SMS2 inhibition in the liver could diminish liver steatosis.


Assuntos
Ceramidas/metabolismo , Fígado Gorduroso/enzimologia , Fígado/enzimologia , PPAR gama/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Antígenos CD36/metabolismo , Linhagem Celular Tumoral , Colesterol na Dieta , Modelos Animais de Doenças , Regulação para Baixo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Feminino , Genes Reporter , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Fatores de Tempo , Transfecção , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Transferases (Outros Grupos de Fosfato Substituídos)/genética
14.
J Clin Invest ; 123(4): 1784-97, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23549085

RESUMO

Serine palmitoyltransferase (SPT) is the first and rate-limiting enzyme of the de novo biosynthetic pathway of sphingomyelin (SM). Both SPT and SM have been implicated in the pathogenesis of atherosclerosis, the development of which is driven by macrophages; however, the role of SPT in macrophage-mediated atherogenesis is unknown. To address this issue, we have analyzed macrophage inflammatory responses and reverse cholesterol transport, 2 key mediators of atherogenesis, in SPT subunit 2-haploinsufficient (Sptlc2(+/-)) macrophages. We found that Sptlc2(+/-) macrophages have significantly lower SM levels in plasma membrane and lipid rafts. This reduction not only impaired inflammatory responses triggered by TLR4 and its downstream NF-κB and MAPK pathways, but also enhanced reverse cholesterol transport mediated by ABC transporters. LDL receptor-deficient (Ldlr(-/-)) mice transplanted with Sptlc2(+/-) bone marrow cells exhibited significantly fewer atherosclerotic lesions after high-fat and high-cholesterol diet feeding. Additionally, Ldlr(-/-) mice with myeloid cell-specific Sptlc2 haploinsufficiency exhibited significantly less atherosclerosis than controls. These findings suggest that SPT could be a novel therapeutic target in atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Haploinsuficiência , Macrófagos/fisiologia , Serina C-Palmitoiltransferase/genética , Animais , Aorta Torácica/patologia , Aterosclerose/sangue , Aterosclerose/imunologia , Transplante de Medula Óssea , Movimento Celular , Quimiocina CCL2/sangue , Colesterol/metabolismo , Ativação Enzimática , Feminino , Glucosilceramidas/metabolismo , Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/farmacologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingomielinas/metabolismo , Receptor 4 Toll-Like/metabolismo
15.
J Biol Chem ; 288(5): 3500-11, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239881

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD(+) for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.


Assuntos
Inibidores Enzimáticos/farmacologia , NAD/biossíntese , Neoplasias/metabolismo , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Acrilamidas/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Isótopos de Carbono , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Marcação por Isótopo , Camundongos , Camundongos SCID , Nicotinamida Fosforribosiltransferase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Piperidinas/farmacologia , Serina/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Arterioscler Thromb Vasc Biol ; 32(7): 1577-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580896

RESUMO

OBJECTIVE: Sphingomyelin synthase (SMS) catalyzes the conversion of ceramide to sphingomyelin and sits at the crossroads of sphingolipid biosynthesis. SMS has 2 isoforms: SMS1 and SMS2. Although they have the same SMS activity, they are different enzymes with distinguishable subcellular localizations and cell expression patterns. It is conceivable that these differences could yield different consequences, in terms of sphingolipid metabolism and its related atherogenesis. METHODS AND RESULTS: We created Sms1 gene knockout mice and found that Sms1 deficiency significantly decreased plasma, liver, and macrophage sphingomyelin (59%, 45%, and 54%, respectively), but only had a marginal effect on ceramide levels. Surprisingly, we found that Sms1 deficiency dramatically increased glucosylceramide and GM3 levels in plasma, liver, and macrophages (4- to 12-fold), whereas Sms2 deficiency had no such effect. We evaluated the total SMS activity in tissues and found that Sms1 deficiency causes 77% reduction in SMS activity in macrophages, indicating SMS1 is the major SMS in macrophages. Moreover, Sms1-deficient macrophages have a significantly higher glucosylceramide synthase activity. We also found that Sms1 deficiency significantly attenuated toll-like 4 receptor-mediated nuclear factor-κB and mitogen-activated protein kinase activation after lipopolysaccharide treatment. To evaluate atherogenicity, we transplanted Sms1 knockout mouse bone marrow into low-density lipoprotein receptor knockout mice (Sms1(-/-)→Ldlr(-/-)). After 3 months on a western diet, these animals showed a significant decrease of atherosclerotic lesions in the root and the entire aorta (35% and 44%, P<0.01, respectively) and macrophage content in lesions (51%, P<0.05), compared with wild-type→Ldlr(-/-) mice. CONCLUSIONS: Sms1 deficiency decreases sphingomyelin, but dramatically increases the levels of glycosphingolipids. Atherosclerosis in Sms1(-/-)→Ldlr(-/-) mice is significantly decreased.


Assuntos
Aterosclerose/etiologia , Esfingolipídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia , Animais , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/fisiologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/fisiologia , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência
17.
J Biol Chem ; 287(24): 20122-31, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22511767

RESUMO

After de novo biosynthesis phospholipids undergo extensive remodeling by the Lands' cycle. Enzymes involved in phospholipid biosynthesis have been studied extensively but not those involved in reacylation of lysophosphopholipids. One key enzyme in the Lands' cycle is fatty acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which utilizes lysophosphatidylcholine (LysoPC) and fatty acyl-CoA to produce various phosphatidylcholine (PC) species. Four isoforms of LPCAT have been identified. In this study we found that LPCAT3 is the major hepatic isoform, and its knockdown significantly reduces hepatic LPCAT activity. Moreover, we report that hepatic LPCAT3 knockdown increases certain species of LysoPCs and decreases certain species of PC. A surprising observation was that LPCAT3 knockdown significantly reduces hepatic triglycerides. Despite this, these mice had higher plasma triglyceride and apoB levels. Lipoprotein production studies indicated that reductions in LPCAT3 enhanced assembly and secretion of triglyceride-rich apoB-containing lipoproteins. Furthermore, these mice had higher microsomal triglyceride transfer protein (MTP) mRNA and protein levels. Mechanistic studies in hepatoma cells revealed that LysoPC enhances secretion of apoB but not apoA-I in a concentration-dependent manner. Moreover, LysoPC increased MTP mRNA, protein, and activity. In short, these results indicate that hepatic LPCAT3 modulates VLDL production by regulating LysoPC levels and MTP expression.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proteínas de Transporte/biossíntese , Regulação da Expressão Gênica/fisiologia , Lipoproteínas VLDL/biossíntese , Fígado/metabolismo , Lisofosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100 , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Lipoproteínas VLDL/genética , Masculino , Camundongos , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
18.
Mol Cell Biol ; 31(20): 4205-18, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844222

RESUMO

It has been shown that inhibition of de novo sphingolipid synthesis increases insulin sensitivity. For further exploration of the mechanism involved, we utilized two models: heterozygous serine palmitoyltransferase (SPT) subunit 2 (Sptlc2) gene knockout mice and sphingomyelin synthase 2 (Sms2) gene knockout mice. SPT is the key enzyme in sphingolipid biosynthesis, and Sptlc2 is one of its subunits. Homozygous Sptlc2-deficient mice are embryonic lethal. However, heterozygous Sptlc2-deficient mice that were viable and without major developmental defects demonstrated decreased ceramide and sphingomyelin levels in the cell plasma membranes, as well as heightened sensitivity to insulin. Moreover, these mutant mice were protected from high-fat diet-induced obesity and insulin resistance. SMS is the last enzyme for sphingomyelin biosynthesis, and SMS2 is one of its isoforms. Sms2 deficiency increased cell membrane ceramide but decreased SM levels. Sms2 deficiency also increased insulin sensitivity and ameliorated high-fat diet-induced obesity. We have concluded that Sptlc2 heterozygous deficiency- or Sms2 deficiency-mediated reduction of SM in the plasma membranes leads to an improvement in tissue and whole-body insulin sensitivity.


Assuntos
Membrana Celular/metabolismo , Resistência à Insulina , Insulina/metabolismo , Esfingomielinas/metabolismo , Animais , Teste de Tolerância a Glucose , Células Hep G2 , Heterozigoto , Humanos , Insulina/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor de Insulina/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingomielinas/análise , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
19.
J Biol Chem ; 285(29): 22403-13, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20452975

RESUMO

Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.


Assuntos
Colina/biossíntese , Dieta , Obesidade/enzimologia , Obesidade/prevenção & controle , Fosfatidiletanolamina N-Metiltransferase/deficiência , Animais , Betaína/administração & dosagem , Betaína/farmacologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/complicações , Fígado Gorduroso/enzimologia , Fígado Gorduroso/patologia , Comportamento Alimentar/efeitos dos fármacos , Resistência à Insulina , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Obesidade/induzido quimicamente , Obesidade/complicações , Fenótipo , Fosfatidilcolinas/biossíntese , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Aumento de Peso/efeitos dos fármacos
20.
J Biol Chem ; 284(39): 27010-9, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19648608

RESUMO

Sphingomyelin (SM) is one of the major lipid components of plasma lipoproteins. Serine palmitoyltransferase (SPT) is the key enzyme in SM biosynthesis. Mice totally lacking in SPT are embryonic lethal. The liver is the major site for plasma lipoprotein biosynthesis, secretion, and degradation, and in this study we utilized a liver-specific knock-out approach for evaluating liver SPT activity and also its role in plasma SM and lipoprotein metabolism. We found that a deficiency of liver-specific Sptlc2 (a subunit of SPT) decreased liver SPT protein mass and activity by 95 and 92%, respectively, but had no effect on other tissues. Liver Sptlc2 deficiency decreased plasma SM levels (in both high density lipoprotein and non-high density lipoprotein fractions) by 36 and 35% (p < 0.01), respectively, and increased phosphatidylcholine levels by 19% (p < 0.05), thus increasing the phosphatidylcholine/SM ratio by 77% (p < 0.001), compared with controls. This deficiency also decreased SM levels in the liver by 38% (p < 0.01) and in the hepatocyte plasma membranes (based on a lysenin-mediated cell lysis assay). Liver-specific Sptlc2 deficiency significantly increased hepatocyte apoE secretion and thus increased plasma apoE levels 3.5-fold (p < 0.0001). Furthermore, plasma from Sptlc2 knock-out mice had a significantly stronger potential for promoting cholesterol efflux from macrophages than from wild-type mice (p < 0.01) because of a greater amount of apoE in the circulation. As a result of these findings, we believe that the ability to control liver SPT activity could result in regulation of lipoprotein metabolism and might have an impact on the development of atherosclerosis.


Assuntos
Apolipoproteínas E/sangue , Fígado/enzimologia , Serina C-Palmitoiltransferase/deficiência , Esfingomielinas/sangue , Animais , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Hepatócitos/citologia , Hepatócitos/metabolismo , Imuno-Histoquímica , Lipídeos/sangue , Lipoproteínas/sangue , Fígado/citologia , Fígado/metabolismo , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA