Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nucleic Acids Res ; 52(5): 2198-2211, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38407356

RESUMO

G-quadruplex (G4s) DNA structures have been implicated in inducing genomic instability and contributing to cancer development. However, the relationship between G4s and cancer-related single nucleotide variants (cSNVs) in clinical settings remains unclear. In this large-scale study, we integrated experimentally validated G4s with genomic cSNVs from 13480 cancer patients to investigate the spatial association of G4s with the cellular cSNV landscape. Our findings demonstrate an increase in local genomic instability with increasing local G4 content in cancer patients, suggesting a potential role for G4s in driving cSNVs. Notably, we observed distinct spatial patterns of cSNVs and common single nucleotide variants (dbSNVs) in relation to G4s, implying different mechanisms for their generation and accumulation. We further demonstrate large, cancer-specific differences in the relationship of G4s and cSNVs, which could have important implications for a new class of G4-stabilizing cancer therapeutics. Moreover, we show that high G4-content can serve as a prognostic marker for local cSNV density and patient survival rates. Our findings underscore the importance of considering G4s in cancer research and highlight the need for further investigation into the underlying molecular mechanisms of G4-mediated genomic instability, especially in the context of cancer.


Assuntos
Quadruplex G , Instabilidade Genômica , Neoplasias , Polimorfismo Genético , Humanos , DNA/química , Instabilidade Genômica/genética , Neoplasias/genética
2.
Genes Chromosomes Cancer ; 60(12): 827-832, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338390

RESUMO

Familial gastrointestinal stromal tumors (GIST) are dominant genetic disorders that are caused by germline mutations of the type III receptor tyrosine kinase KIT. While sporadic mutations are frequently found in mastocytosis and GISTs, germline mutations of KIT have only been described in 39 families until now. We detected a novel germline mutation of KIT in exon 11 (p.Lys-558-Asn; K558N) in a patient from a kindred with several GISTs harboring different secondary somatic KIT mutations. Structural analysis suggests that the primary germline mutation alone is not sufficient to release the autoinhibitory region of KIT located in the transmembrane domain. Instead, the KIT kinase module becomes constitutively activated when K558N combines with different secondary somatic mutations. The identical germline mutation in combination with an additional somatic KIT mutation was detected in a second patient of the kindred with seminoma while a third patient within the family had a cutaneous mastocytosis. These findings suggest that the K558N mutation interferes with the juxtamembranous part of KIT, since seminoma and mastocystosis are usually not associated with exon 11 mutations.


Assuntos
Tumores do Estroma Gastrointestinal/genética , Mastocitose/genética , Proteínas Proto-Oncogênicas c-kit/genética , Seminoma/genética , Adolescente , Adulto , Criança , Pré-Escolar , Éxons/genética , Feminino , Tumores do Estroma Gastrointestinal/patologia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Mastocitose/patologia , Linhagem , Seminoma/patologia , Adulto Jovem
3.
DNA Repair (Amst) ; 105: 103143, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144487

RESUMO

The general transcription factor II H (TFIIH) plays an essential role in transcription and nucleotide excision DNA repair (NER). TFIIH is a complex 10 subunit containing molecular machine that harbors three enzymatic activities while the remaining subunits assume regulatory and/or structural functions. Intriguingly, the three enzymatic activities of the CDK7 kinase, the XPB translocase, and the XPD helicase exert different impacts on the overall activities of TFIIH. While the enzymatic function of the XPD helicase is exclusively required in NER, the CDK7 kinase is deeply involved in transcription, whereas XPB is essential to both processes. Recent structural and biochemical endeavors enabled unprecedented details towards the molecular basis of these different TFIIH functions and how the enzymatic activities are regulated within the entire complex. Due to its involvement in two fundamental processes, TFIIH has become increasingly important as a target in cancer therapy and two of the three enzymes have already been addressed successfully. Here we explore the possibilities of recent high resolution structures in the context of TFIIH druggability and shed light on the functional consequences of the different approaches towards TFIIH inhibition.


Assuntos
Antineoplásicos/farmacologia , Reparo do DNA , Neoplasias/metabolismo , Fator de Transcrição TFIIH/antagonistas & inibidores , Fator de Transcrição TFIIH/metabolismo , Antineoplásicos/uso terapêutico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
4.
Nucleic Acids Res ; 48(21): 12282-12296, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196848

RESUMO

The superfamily 2 helicase XPB is an integral part of the general transcription factor TFIIH and assumes essential catalytic functions in transcription initiation and nucleotide excision repair. The ATPase activity of XPB is required in both processes. We investigated the interaction network that regulates XPB via the p52 and p8 subunits with functional mutagenesis based on our crystal structure of the p52/p8 complex and current cryo-EM structures. Importantly, we show that XPB's ATPase can be activated either by DNA or by the interaction with the p52/p8 proteins. Intriguingly, we observe that the ATPase activation by p52/p8 is significantly weaker than the activation by DNA and when both p52/p8 and DNA are present, p52/p8 dominates the maximum activation. We therefore define p52/p8 as the master regulator of XPB acting as an activator and speed limiter at the same time. A correlative analysis of the ATPase and translocase activities of XPB shows that XPB only acts as a translocase within the context of complete core TFIIH and that XPA increases the processivity of the translocase complex without altering XPB's ATPase activity. Our data define an intricate network that tightly controls the activity of XPB during transcription and nucleotide excision repair.


Assuntos
Adenosina Trifosfatases/química , Chaetomium/química , DNA/genética , Proteínas Fúngicas/química , Subunidades Proteicas/química , Fator de Transcrição TFIIH/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Chaetomium/genética , Chaetomium/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica
5.
Nucleic Acids Res ; 48(22): 12689-12696, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33166411

RESUMO

Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five 'structural' subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD's DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD's affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62's high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Fator de Transcrição TFIIH/ultraestrutura , Sítios de Ligação/efeitos da radiação , Microscopia Crioeletrônica , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/efeitos da radiação , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a RNA/genética , Imagem Individual de Molécula , Fator de Transcrição TFIIH/genética , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/ultraestrutura
6.
J Invest Dermatol ; 138(7): 1573-1581, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29481902

RESUMO

Primary cutaneous marginal zone lymphoma (PCMZL) represents an indolent subtype of non-Hodgkin lymphoma that is clinically characterized by slowly growing skin tumors with a very low propensity for systemic dissemination. The underlying genetic basis of PCMZL has not been comprehensively elucidated. To gain deeper insight into the molecular pathogenesis of PCMZL, we performed hybridization-based panel sequencing of 38 patients with well-characterized PCMZL. In 32 of the 38 patients, we identified genetic alterations within 39 selected target genes. The most frequently detected alterations (24/38 patients, 63.2%) affected the FAS gene, of which 22 patients harbored alterations, which affect the functionally relevant death domain of the apoptosis-regulating FAS/CD95 protein in a dominant-negative manner. In addition, we identified highly recurrent mutations in three other genes, namely SLAMF1, SPEN, and NCOR2. Our molecular data suggest that apoptosis defects provide the molecular basis of the observed clinical features of PCMZL, which commonly presents with only slowly growing skin tumors, reflecting its invariably indolent behavior. From a diagnostic point of view, highly recurrent FAS mutations in PCMZL presumably separate this indolent lymphoma entity from pseudolymphoma, and this adds adjunctive discriminatory features at a molecular level.


Assuntos
Biomarcadores Tumorais/genética , Linfoma de Zona Marginal Tipo Células B/genética , Neoplasias Cutâneas/genética , Receptor fas/genética , Domínio de Morte/genética , Diagnóstico Diferencial , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Mutação , Pseudolinfoma/diagnóstico , Neoplasias Cutâneas/diagnóstico
7.
ACS Infect Dis ; 3(9): 666-675, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786661

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a highly successful human pathogen and has infected approximately one-third of the world's population. Multiple drug resistant (MDR) and extensively drug resistant (XDR) TB strains and coinfection with HIV have increased the challenges of successfully treating this disease pandemic. The metabolism of host cholesterol by Mtb is an important factor for both its virulence and pathogenesis. In Mtb, the cholesterol side chain is degraded through multiple cycles of ß-oxidation and FadA5 (Rv3546) catalyzes side chain thiolysis in the first two cycles. Moreover, FadA5 is important during the chronic stage of infection in a mouse model of Mtb infection. Here, we report the redox control of FadA5 catalytic activity that results from reversible disulfide bond formation between Cys59-Cys91 and Cys93-Cys377. Cys93 is the thiolytic nucleophile, and Cys377 is the general acid catalyst for cleavage of the ß-keto-acyl-CoA substrate. The disulfide bond formed between the two catalytic residues Cys93 and Cys377 blocks catalysis. The formation of the disulfide bonds is accompanied by a large domain swap at the FadA5 dimer interface that serves to bring Cys93 and Cys377 in close proximity for disulfide bond formation. The catalytic activity of FadA5 has a midpoint potential of -220 mV, which is close to the Mtb mycothiol potential in the activated macrophage. The redox profile of FadA5 suggests that FadA5 is fully active when Mtb resides in the unactivated macrophage to maximize flux into cholesterol catabolism. Upon activation of the macrophage, the oxidative shift in the mycothiol potential will decrease the thiolytic activity by 50%. Thus, the FadA5 midpoint potential is poised to rapidly restrict cholesterol side chain degradation in response to oxidative stress from the host macrophage environment.


Assuntos
Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Colesterol/metabolismo , Mycobacterium tuberculosis/patogenicidade , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Dicroísmo Circular , Cisteína/metabolismo , Humanos , Ativação de Macrófagos , Modelos Moleculares , Oxirredução , Conformação Proteica
8.
DNA Repair (Amst) ; 44: 136-142, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27262611

RESUMO

XPD, as part of the TFIIH complex, has classically been linked to the damage verification step of nucleotide excision repair (NER). However, recent data indicate that XPD, due to its iron-sulfur center interacts with the iron sulfur cluster assembly proteins, and may interact with other proteins in the cell to mediate a diverse set of biological functions including cell cycle regulation, mitosis, and mitochondrial function. In this perspective, after first reviewing the function and some of the key disease causing variants that affect XPD's interaction with TFIIH and the CDK-activating kinase complex (CAK), we investigate these intriguing cellular roles of XPD and highlight important unanswered questions that provide a fertile ground for further scientific exploration.


Assuntos
Reparo do DNA , DNA/metabolismo , Fator de Transcrição TFIIH/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/genética , Ciclo Celular , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA/química , Dano ao DNA , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/química , Proteína Grupo D do Xeroderma Pigmentoso/genética , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Biochemistry ; 55(21): 2992-3006, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27136302

RESUMO

The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89-100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Éteres Fenílicos/química , Piridonas/química , Yersinia pestis/enzimologia , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , NAD/metabolismo , Ligação Proteica , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 112(27): 8272-7, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100901

RESUMO

Nucleotide excision repair (NER) is responsible for the removal of a large variety of structurally diverse DNA lesions. Mutations of the involved proteins cause the xeroderma pigmentosum (XP) cancer predisposition syndrome. Although the general mechanism of the NER process is well studied, the function of the XPA protein, which is of central importance for successful NER, has remained enigmatic. It is known, that XPA binds kinked DNA structures and that it interacts also with DNA duplexes containing certain lesions, but the mechanism of interactions is unknown. Here we present two crystal structures of the DNA binding domain (DBD) of the yeast XPA homolog Rad14 bound to DNA with either a cisplatin lesion (1,2-GG) or an acetylaminofluorene adduct (AAF-dG). In the structures, we see that two Rad14 molecules bind to the duplex, which induces DNA melting of the duplex remote from the lesion. Each monomer interrogates the duplex with a ß-hairpin, which creates a 13mer duplex recognition motif additionally characterized by a sharp 70° DNA kink at the position of the lesion. Although the 1,2-GG lesion stabilizes the kink due to the covalent fixation of the crosslinked dG bases at a 90° angle, the AAF-dG fully intercalates into the duplex to stabilize the kinked structure.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/química , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/química , 2-Acetilaminofluoreno/química , 2-Acetilaminofluoreno/metabolismo , Sequência de Aminoácidos , Cisplatino/química , Cisplatino/metabolismo , Cristalografia por Raios X , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Termodinâmica , Temperatura de Transição
11.
PLoS Biol ; 12(9): e1001954, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25268380

RESUMO

The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER). Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable fungal orthologue) to decipher the different molecular prerequisites necessary for either transcription or DNA repair. In vitro and in vivo assays demonstrate that mutations in the 4Fe4S cluster domain of XPD abrogate the NER function of TFIIH and do not affect its transcriptional activity. We show that the p44-dependent activation of XPD is promoted by the stimulation of its ATPase activity. Furthermore, we clearly demonstrate that XPD requires DNA binding, ATPase, and helicase activity to function in NER. In contrast, these enzymatic properties are dispensable for transcription initiation. XPD helicase is thus exclusively devoted to NER and merely acts as a structural scaffold to maintain TFIIH integrity during transcription.


Assuntos
Reparo do DNA/genética , Proteínas Fúngicas/genética , Fator de Transcrição TFIIH/genética , Transcrição Gênica , Proteína Grupo D do Xeroderma Pigmentoso/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Chaetomium/genética , Chaetomium/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
12.
J Biol Chem ; 289(10): 7190-7199, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24443566

RESUMO

SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana Transportadoras/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Simulação por Computador , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Ribossômicas Maiores de Bactérias/química , Canais de Translocação SEC , Proteínas SecA
13.
J Biol Chem ; 288(39): 28217-29, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23935105

RESUMO

G-quadruplex (G4) DNA, an alternate structure formed by Hoogsteen hydrogen bonds between guanines in G-rich sequences, threatens genomic stability by perturbing normal DNA transactions including replication, repair, and transcription. A variety of G4 topologies (intra- and intermolecular) can form in vitro, but the molecular architecture and cellular factors influencing G4 landscape in vivo are not clear. Helicases that unwind structured DNA molecules are emerging as an important class of G4-resolving enzymes. The BRCA1-associated FANCJ helicase is among those helicases able to unwind G4 DNA in vitro, and FANCJ mutations are associated with breast cancer and linked to Fanconi anemia. FANCJ belongs to a conserved iron-sulfur (Fe S) cluster family of helicases important for genomic stability including XPD (nucleotide excision repair), DDX11 (sister chromatid cohesion), and RTEL (telomere metabolism), genetically linked to xeroderma pigmentosum/Cockayne syndrome, Warsaw breakage syndrome, and dyskeratosis congenita, respectively. To elucidate the role of FANCJ in genomic stability, its molecular functions in G4 metabolism were examined. FANCJ efficiently unwound in a kinetic and ATPase-dependent manner entropically favored unimolecular G4 DNA, whereas other Fe-S helicases tested did not. The G4-specific ligands Phen-DC3 or Phen-DC6 inhibited FANCJ helicase on unimolecular G4 ∼1000-fold better than bi- or tetramolecular G4 DNA. The G4 ligand telomestatin induced DNA damage in human cells deficient in FANCJ but not DDX11 or XPD. These findings suggest FANCJ is a specialized Fe-S cluster helicase that preserves chromosomal stability by unwinding unimolecular G4 DNA likely to form in transiently unwound single-stranded genomic regions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Quadruplex G , Regulação da Expressão Gênica , Instabilidade Genômica , Proteínas Ferro-Enxofre/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA/química , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , Escherichia coli/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Guanina/química , Humanos , Concentração Inibidora 50 , Ligantes , Interferência de RNA , Proteínas Recombinantes/química , Thermoplasma/metabolismo
14.
Mol Cell ; 49(4): 692-703, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23333303

RESUMO

Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.


Assuntos
Proteínas de Drosophila/química , Canais Iônicos/química , Proteínas Centrais de snRNP/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Drosophila melanogaster , Humanos , Ligação de Hidrogênio , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Xenopus/química , Xenopus laevis , Proteínas Centrais de snRNP/ultraestrutura
15.
J Biol Chem ; 288(3): 2029-39, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23192347

RESUMO

About one-third of all cellular proteins pass through the secretory pathway and hence undergo oxidative folding in the endoplasmic reticulum (ER). Protein-disulfide isomerase (PDI) and related members of the PDI family assist in the folding of substrates by catalyzing the oxidation of two cysteines and isomerization of disulfide bonds as well as by acting as chaperones. In this study, we present the crystal structure of ERp27, a redox-inactive member of the PDI family. The structure reveals its substrate-binding cleft, which is homologous to PDI, but is able to adapt in size and hydrophobicity. Isothermal titration calorimetry experiments demonstrate that ERp27 is able to distinguish between folded and unfolded substrates, only interacting with the latter. ERp27 is up-regulated during ER stress, thus presumably allowing it to bind accumulating misfolded substrates and present them to ERp57 for catalysis.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/química , Isomerases de Dissulfetos de Proteínas/química , Sítios de Ligação , Biocatálise , Calorimetria , Linhagem Celular Tumoral , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/metabolismo , Oxirredução , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Proteína Inibidora de ATPase
16.
J Biol Chem ; 287(26): 21699-716, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22582397

RESUMO

The Q motif, conserved in a number of RNA and DNA helicases, is proposed to be important for ATP binding based on structural data, but its precise biochemical functions are less certain. FANCJ encodes a Q motif DEAH box DNA helicase implicated in Fanconi anemia and breast cancer. A Q25A mutation of the invariant glutamine in the Q motif abolished its ability to complement cisplatin or telomestatin sensitivity of a fancj null cell line and exerted a dominant negative effect. Biochemical characterization of the purified recombinant FANCJ-Q25A protein showed that the mutation disabled FANCJ helicase activity and the ability to disrupt protein-DNA interactions. FANCJ-Q25A showed impaired DNA binding and ATPase activity but displayed ATP binding and temperature-induced unfolding transition similar to FANCJ-WT. Size exclusion chromatography and sedimentation velocity analyses revealed that FANCJ-WT existed as molecular weight species corresponding to a monomer and a dimer, and the dimeric form displayed a higher specific activity for ATPase and helicase, as well as greater DNA binding. In contrast, FANCJ-Q25A existed only as a monomer, devoid of helicase activity. Thus, the Q motif is essential for FANCJ enzymatic activity in vitro and DNA repair function in vivo.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Animais , Catálise , Linhagem Celular , Sobrevivência Celular , Galinhas , Cromatografia/métodos , Reparo do DNA , Dimerização , Glicerol/farmacologia , Células HeLa , Humanos , Hidrólise , Cinética , Modelos Biológicos , Modelos Genéticos , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Oxazóis/farmacologia , Desnaturação Proteica , Proteínas Recombinantes/metabolismo , Temperatura
17.
Biochim Biophys Acta ; 1810(2): 162-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21081150

RESUMO

BACKGROUND: BAD protein (Bcl-2 antagonist of cell death) belongs to the BH3-only subfamily of proapoptotic proteins and is proposed to function as the sentinel of the cellular health status. Physiological activity of BAD is regulated by phosphorylation, association with 14-3-3 proteins, binding to membrane lipids and pore formation. Since the functional role of the BAD C-terminal part has not been considered so far, we have investigated here the interplay of the structure and function of this region. METHODS: The structure of the regulatory C-terminal part of human BAD was analyzed by CD spectroscopy. The channel-forming activity of full-length BAD and BAD peptides was carried out by lipid bilayer measurements. Interactions between proteins and peptides were monitored by the surface plasmon resonance technique. In aqueous solution, C-terminal part of BAD exhibits a well-ordered structure and stable conformation. In a lipid environment, the helical propensity considerably increases. The interaction of the C-terminal segment of BAD with the isolated BH3 domain results in the formation of permanently open pores whereby the phosphorylation of serine 118 within the BH3 domain is necessary for effective pore formation. In contrast, phosphorylation of serine 99 in combination with 14-3-3 association suppresses formation of channels. C-terminal part of BAD controls BAD function by structural transitions, lipid binding and phosphorylation. Conformational changes of this region upon membrane interaction in conjunction with phosphorylation of the BH3 domain suggest a novel mechanism for regulation of BAD. GENERAL SIGNIFICANCE: Multiple signaling pathways mediate inhibition and activation of cell death via BAD.


Assuntos
Bicamadas Lipídicas/química , Conformação Proteica , Estrutura Terciária de Proteína , Proteína de Morte Celular Associada a bcl/química , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Água/química , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
18.
Protein Sci ; 18(12): 2480-91, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19798741

RESUMO

Rhodaneses/sulfurtransferases are ubiquitous enzymes that catalyze the transfer of sulfane sulfur from a donor molecule to a thiophilic acceptor via an active site cysteine that is modified to a persulfide during the reaction. Here, we present the first crystal structure of a triple-domain rhodanese-like protein, namely YnjE from Escherichia coli, in two states where its active site cysteine is either unmodified or present as a persulfide. Compared to well-characterized tandem domain rhodaneses, which are composed of one inactive and one active domain, YnjE contains an extra N-terminal inactive rhodanese-like domain. Phylogenetic analysis reveals that YnjE triple-domain homologs can be found in a variety of other gamma-proteobacteria, in addition, some single-, tandem-, four and even six-domain variants exist. All YnjE rhodaneses are characterized by a highly conserved active site loop (CGTGWR) and evolved independently from other rhodaneses, thus forming their own subfamily. On the basis of structural comparisons with other rhodaneses and kinetic studies, YnjE, which is more similar to thiosulfate:cyanide sulfurtransferases than to 3-mercaptopyruvate:cyanide sulfurtransferases, has a different substrate specificity that depends not only on the composition of the active site loop with the catalytic cysteine at the first position but also on the surrounding residues. In vitro YnjE can be efficiently persulfurated by the cysteine desulfurase IscS. The catalytic site is located within an elongated cleft, formed by the central and C-terminal domain and is lined by bulky hydrophobic residues with the catalytic active cysteine largely shielded from the solvent.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Sulfurtransferases/química , Tiossulfato Sulfurtransferase/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sulfurtransferases/genética
19.
EMBO Rep ; 6(2): 134-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15654319

RESUMO

Some bacterial genomes contain an incomplete set of genes encoding phosphoribosyl isomerases, raising the question of whether there exists broadened substrate specificity for the missing gene products. To investigate the underlying molecular principles of this hypothesis, we have determined the crystal structure of the bifunctional enzyme PriA from Streptomyces coelicolor at 1.8 A resolution. It consists of a (betaalpha)(8)-barrel fold that is assembled by two symmetric (betaalpha)(4) half-barrels. The structure shows how its active site may catalyse the isomerization reactions of two different substrates, and we provide a plausible model of how the smaller of the two substrates could be bound in two different orientations. Our findings expand the half-barrel ancestor concept by demonstrating that symmetry-related half-barrels could provide a smart solution to cope with dual substrate specificity. The data may help to unravel molecular rationales regarding how organisms with miniature genomes can keep central biological pathways functional.


Assuntos
Adenosina Trifosfatases/química , DNA Helicases/química , Streptomyces coelicolor/enzimologia , Adenosina Trifosfatases/isolamento & purificação , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , DNA Helicases/isolamento & purificação , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Especificidade por Substrato
20.
Nature ; 430(7001): 803-6, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15306815

RESUMO

The molybdenum cofactor is part of the active site of all molybdenum-dependent enzymes, except nitrogenase. The molybdenum cofactor consists of molybdopterin, a phosphorylated pyranopterin, with an ene-dithiolate coordinating molybdenum. The same pyranopterin-based cofactor is involved in metal coordination of the homologous tungsten-containing enzymes found in archea. The molybdenum cofactor is synthesized by a highly conserved biosynthetic pathway. In plants, the multidomain protein Cnx1 catalyses the insertion of molybdenum into molybdopterin. The Cnx1 G domain (Cnx1G), whose crystal structure has been determined in its apo form, binds molybdopterin with high affinity and participates in the catalysis of molybdenum insertion. Here we present two high-resolution crystal structures of Cnx1G in complex with molybdopterin and with adenylated molybdopterin (molybdopterin-AMP), a mechanistically important intermediate. Molybdopterin-AMP is the reaction product of Cnx1G and is subsequently processed in a magnesium-dependent reaction by the amino-terminal E domain of Cnx1 to yield active molybdenum cofactor. The unexpected identification of copper bound to the molybdopterin dithiolate sulphurs in both structures, coupled with the observed copper inhibition of Cnx1G activity, provides a molecular link between molybdenum and copper metabolism.


Assuntos
Coenzimas/metabolismo , Cobre/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/metabolismo , Pteridinas/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Calnexina/química , Calnexina/metabolismo , Cristalização , Cristalografia por Raios X , Magnésio/metabolismo , Modelos Moleculares , Cofatores de Molibdênio , Ligação Proteica , Estrutura Terciária de Proteína , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA