Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 600(7890): 713-719, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880502

RESUMO

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Assuntos
Microbioma Gastrointestinal , Abandono do Hábito de Fumar , Aumento de Peso , Animais , Estudos Transversais , Disbiose/etiologia , Disbiose/metabolismo , Disbiose/patologia , Camundongos , Modelos Animais , Fumar/metabolismo , Fumar/patologia
2.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888430

RESUMO

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Assuntos
Doença de Crohn/microbiologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Transcriptoma/genética , Animais , Antibacterianos/farmacologia , Relógios Circadianos/fisiologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Dieta , Células Epiteliais/citologia , Células Epiteliais/imunologia , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Homeostase , Hibridização in Situ Fluorescente , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Intestino Delgado/fisiologia , Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodicidade , Linfócitos T/imunologia , Transcriptoma/fisiologia
3.
Nat Cancer ; 1(9): 894-908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-35121952

RESUMO

Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.


Assuntos
Argininossuccinato Sintase , Neoplasias da Mama , Animais , Argininossuccinato Sintase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Purinas
4.
Mol Ther ; 27(10): 1848-1862, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375359

RESUMO

Non-alcoholic steatosis and non-alcoholic steatohepatitis (NASH) are liver pathologies characterized by severe metabolic alterations due to fat accumulation that lead to liver damage, inflammation, and fibrosis. We demonstrate that the voltage-dependent anion channel 1 (VDAC1)-based peptide R-Tf-D-LP4 arrested steatosis and NASH progression, as produced by a high-fat diet (HFD-32) in a mouse model, and reversed liver pathology to a normal-like state. VDAC1, a multi-functional mitochondrial protein, regulates cellular metabolic and energetic functions and apoptosis and interacts with many proteins. R-Tf-D-LP4 treatment eliminated hepatocyte ballooning degeneration, inflammation, and liver fibrosis associated with steatosis, NASH, and hepatocarcinoma, and it restored liver pathology-associated enzyme and glucose levels. Peptide treatment affected carbohydrate and lipid metabolism, increasing the expression of enzymes and factors associated with fatty acid transport to mitochondria, enhancing ß-oxidation and thermogenic processes, yet decreasing the expression of enzymes and regulators of fatty acid synthesis. The VDAC1-based peptide thus offers a promising therapeutic approach for steatosis and NASH.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Cirrose Hepática/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Canal de Ânion 1 Dependente de Voltagem/química , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Resultado do Tratamento , Canal de Ânion 1 Dependente de Voltagem/genética
5.
Nat Metab ; 1(1): 58-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-32694806

RESUMO

Enteroendocrine cells relay energy-derived signals to immune cells to signal states of nutrient abundance and control immunometabolism. Emerging data suggest that the gut-derived nutrient-induced incretin glucose-dependent insulinotropic polypeptide (GIP) operates at the interface of metabolism and inflammation. Here we show that high-fat diet (HFD)-fed mice with immune cell-targeted GIP receptor (GIPR) deficiency exhibit greater weight gain, insulin resistance, hepatic steatosis and significant myelopoiesis concomitantly with impaired energy expenditure and inguinal white adipose tissue (WAT) beiging. Expression of the S100 calcium-binding protein S100A8 was increased in the WAT of mice with immune cell-targeted GIPR deficiency and co-deletion of GIPR and the heterodimer S100A8/A9 in immune cells ameliorated the aggravated metabolic and inflammatory phenotype following a HFD. Specific GIPR deletion in myeloid cells identified this lineage as the target of GIP effects. Furthermore, GIP directly downregulated S100A8 expression in adipose tissue macrophages. Collectively, our results identify a myeloid-GIPR-S100A8/A9 signalling axis coupling nutrient signals to the control of inflammation and adaptive thermogenesis.


Assuntos
Peso Corporal , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Células Mieloides/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Calgranulina A/genética , Calgranulina B/genética , Imunidade , Imuno-Histoquímica , Inflamação/patologia , Resistência à Insulina/genética , Camundongos , Mielopoese/genética , Fenótipo , Receptores dos Hormônios Gastrointestinais/deficiência , Receptores dos Hormônios Gastrointestinais/metabolismo
6.
Nat Immunol ; 18(6): 665-674, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459435

RESUMO

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Assuntos
Tecido Adiposo Marrom/imunologia , Macrófagos/imunologia , Proteína 2 de Ligação a Metil-CpG/genética , Sistema Nervoso Simpático/metabolismo , Termogênese/imunologia , Adipócitos Marrons , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Animais , Axônios/metabolismo , Receptor 1 de Quimiocina CX3C , Metabolismo Energético/imunologia , Citometria de Fluxo , Homeostase , Immunoblotting , Macrófagos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/metabolismo , Semaforinas/metabolismo
7.
Mol Endocrinol ; 27(7): 1091-102, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23676213

RESUMO

Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are central components of systems regulating appetite and energy homeostasis. Here we report on the establishment of a mouse model in which the ribonuclease III ribonuclease Dicer-1 has been specifically deleted from POMC-expressing neurons (POMC(ΔDCR)), leading to postnatal cell death. Mice are born phenotypically normal, at the expected genetic ratio and with normal hypothalamic POMC-mRNA levels. At 6 weeks of age, no POMC neurons/cells could be detected either in the arcuate nucleus or in the pituitary of POMC(ΔDCR) mice. POMC(ΔDCR) develop progressive obesity secondary to decreased energy expenditure but unrelated to food intake, which was surprisingly lower than in control mice. Reduced expression of AgRP and ghrelin receptor in the hypothalamus and reduced uncoupling protein 1 expression in brown adipose tissue can potentially explain the decreased food intake and decreased heat production, respectively, in these mice. Fasting glucose levels were dramatically elevated in POMC(ΔDCR) mice and the glucose tolerance test revealed marked glucose intolerance in these mice. Secondary to corticotrope ablation, basal and stress-induced corticosterone levels were undetectable in POMC(ΔDCR) mice. Despite this lack of activation of the neuroendocrine stress response, POMC(ΔDCR) mice exhibited an anxiogenic phenotype, which was accompanied with elevated levels of hypothalamic corticotropin-releasing factor and arginine-vasopressin transcripts. In conclusion, postnatal ablation of POMC neurons leads to enhanced anxiety and the development of obesity despite decreased food intake and glucocorticoid deficiency.


Assuntos
Ansiedade/metabolismo , Ansiedade/patologia , Comportamento Animal , Ingestão de Alimentos , Neurônios/patologia , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Adiposidade , Animais , Animais Recém-Nascidos , Metabolismo Basal , Peso Corporal , Corticotrofos/metabolismo , Corticotrofos/patologia , RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Neurônios/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fenótipo , Ribonuclease III/metabolismo
8.
Sci Rep ; 3: 1254, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409245

RESUMO

Toll-like receptors (TLRs) are traditionally associated with immune-mediated host defense. Here, we ascribe a novel extra-immune, hypothalamic-associated function to TLR2, a TLR-family member known to recognize lipid components, in the protection against obesity. We found that TLR2-deficient mice exhibited mature-onset obesity and susceptibility to high-fat diet (HFD)-induced weight gain, via modulation of food intake. Age-related obesity was still evident in chimeric mice, carrying comparable TLR2(+) immune cells, suggesting a non-hematopoietic-related involvement of this receptor. TLR2 was up-regulated with age or HFD in pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus, a brain area participating in central-metabolic regulation, possibly modulating the hypothalamic-anorexigenic peptide, α-melanocyte-stimulating hormone (α-MSH). Direct activation of TLR2 in a hypothalamic-neuronal cell-line via its known ligands, further supports its capacity to mediate non-immune related metabolic regulation. Thus, our findings identify TLR2 expressed by hypothalamic neurons as a potential novel regulator of age-related weight gain and energy expenditure.


Assuntos
Envelhecimento , Hipotálamo/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Metabolismo Energético , Ligantes , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , alfa-MSH/metabolismo
9.
J Clin Endocrinol Metab ; 98(3): 1173-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23372170

RESUMO

CONTEXT: Adipose tissue macrophages (ATMs) are thought to engulf the remains of dead adipocytes in obesity, potentially resulting in increased intracellular neutral lipid content. Lipid-laden macrophages (foam cells [FCs]) have been described in atherosclerotic lesions and have been proposed to contribute to vascular pathophysiology, which is enhanced in obesity. OBJECTIVE: The objective of this study was to determine whether a subclass of lipid-laden ATMs (adipose FCs) develop in obesity and to assess whether they may uniquely contribute to obesity-associated morbidity. SETTING AND PATIENTS: Patients undergoing elective abdominal surgery from the Beer-Sheva (N = 94) and the Leipzig (N = 40) complementary cohorts were recruited. Paired abdominal subcutaneous (SC) and omental (Om) fat biopsy samples were collected and analyzed by histological and flow cytometry-based methods. Functional studies in mice included coculture of ATMs or FCs with adipose tissue. RESULTS: ATM lipid content was increased 3-fold in Om compared with SC fat, particularly in obese persons. FCs could be identified in some patients and were most abundant in Om fat of obese persons, particularly those with intra-abdominal fat distribution. Stepwise multivariate models demonstrated depot differential associations: fasting glucose with SC FCs (ß = 0.667, P < .001) and fasting insulin (ß = 0.413, P = .006) and total ATM count (ß = 0.310, P = .034) with Om FCs in models including age, body mass index, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. When cocultured with adipose explants from lean mice, FCs induced attenuated insulin responsiveness compared with adipose explants cocultured with control ATMs with low lipid content. CONCLUSIONS: FCs can be identified as an ATM subclass in human SC and Om adipose tissues in 2 independent cohorts, with distinct depot-related associations with clinical parameters. Once formed, they may engage in local cross-talk with adipocytes, contributing to adipose insulin resistance.


Assuntos
Adipócitos/patologia , Aterosclerose/patologia , Células Espumosas/patologia , Obesidade/patologia , Omento/patologia , Gordura Subcutânea/patologia , Adulto , Animais , Aterosclerose/epidemiologia , Células Cultivadas , Estudos de Coortes , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Morbidade , Obesidade/epidemiologia , Fagocitose/fisiologia , Fatores de Risco , Células Estromais/patologia
10.
Hepatology ; 57(2): 525-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22911490

RESUMO

UNLABELLED: Sphingolipids are important structural components of cell membranes and act as critical regulators of cell function by modulating intracellular signaling pathways. Specific sphingolipids, such as ceramide, glucosylceramide, and ganglioside GM3, have been implicated in various aspects of insulin resistance, because they have been shown to modify several steps in the insulin signaling pathway, such as phosphorylation of either protein kinase B (Akt) or of the insulin receptor. We now explore the role of the ceramide acyl chain length in insulin signaling by using a ceramide synthase 2 (CerS2) null mouse, which is unable to synthesize very long acyl chain (C22-C24) ceramides. CerS2 null mice exhibited glucose intolerance despite normal insulin secretion from the pancreas. Both insulin receptor and Akt phosphorylation were abrogated in liver, but not in adipose tissue or in skeletal muscle. The lack of insulin receptor phosphorylation in liver correlated with its inability to translocate into detergent-resistant membranes (DRMs). Moreover, DRMs in CerS2 null mice displayed properties significantly different from those in wild-type mice, suggesting that the altered sphingolipid acyl chain length directly affects insulin receptor translocation and subsequent signaling. CONCLUSION: We conclude that the sphingolipid acyl chain composition of liver regulates insulin signaling by modifying insulin receptor translocation into membrane microdomains.


Assuntos
Intolerância à Glucose/etiologia , Resistência à Insulina , Microdomínios da Membrana/efeitos dos fármacos , Esfingolipídeos/metabolismo , Animais , Glicemia/metabolismo , Membrana Celular/efeitos dos fármacos , Ceramidas/metabolismo , Intolerância à Glucose/sangue , Insulina/fisiologia , Fígado/metabolismo , Microdomínios da Membrana/fisiologia , Camundongos , Oxirredutases/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA