Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 62(20): e1800588, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091516

RESUMO

SCOPE: Different metabolic and excretion pathways of the benzyl glucosinolate breakdown products benzyl isothiocyanate and benzyl cyanide are investigated to obtain information about their multiple fate after ingestion. Detailed focus is on the so far underestimated transformation/excretion pathways-protein conjugation and exhalation. METHODS AND RESULTS: Metabolites, protein conjugates, and non-conjugated isothiocyanates are determined in plasma, urine, and breath of seven volunteers after consuming freeze-dried nasturtium or bread enriched with nasturtium. Samples are collected up to 48 h at selected time points. The metabolites of the mercapturic acid pathway are detectable in plasma up to 24 h after consumption. Additionally, mercapturic acid is the main metabolite in urine, but non-conjugated benzyl isothiocyanate is detectable as well. Protein conjugates show high amounts in plasma even 48 h after consumption. In breath, benzyl isothiocyanate and benzyl cyanide are detectable up to 48 h after consumption. CONCLUSION: Isothiocyanates are not only metabolized via the mercapturic acid pathway, but also form protein conjugates in blood and are exhaled. To balance intake and excretion, it is necessary to investigate all potential metabolites and excretion routes. This has important implications for the understanding of physiological and pharmacological effects of isothiocyanate-containing products.


Assuntos
Nasturtium , Tiocianatos/farmacocinética , Tioglucosídeos/farmacocinética , Acetonitrilas/sangue , Acetonitrilas/farmacocinética , Acetonitrilas/urina , Acetilcisteína/sangue , Acetilcisteína/urina , Adulto , Pão , Testes Respiratórios/métodos , Feminino , Alimentos Fortificados , Humanos , Pessoa de Meia-Idade , Folhas de Planta , Tiocianatos/sangue , Tiocianatos/metabolismo , Tiocianatos/urina , Tioglucosídeos/sangue , Tioglucosídeos/metabolismo , Tioglucosídeos/urina
2.
Food Chem ; 245: 564-569, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287410

RESUMO

The epithionitriles, 1-cyano-2,3-epithiopropane, in particular, and 1-cyano-3,4-epithiobutane, are important, but yet underestimated glucosinolate hydrolysis products that are released instead of the cancer preventative isothiocyanates in Brassica vegetables, such as cabbage, broccoli, or pak choi. Here, we characterized the reactivity of 1-cyano-2,3-epithiopropane under aqueous heat treatment conditions and compared our findings to those of the related epithionitriles 1-cyano-3,4-epithiobutane and 1-cyano-4,5-epithiopentane. In contrast to the other epithionitriles, 1-cyano-2,3-epithiopropane is highly reactive. As a result, 2-aminothiophene and dimeric 1,4-dithiane-2,5-diacetonitrile were identified as main products and a reaction mechanism is proposed. Formation of 2-aminothiophene was also observed in cooked white cabbage samples. Moreover, three novel compounds were identified as derivatives of the related epithionitriles. The results imply that apart from isothiocyanates, process-derived compounds should be considered in regards to cancer preventative Brassica vegetable related bioactivity.


Assuntos
Brassica/química , Extratos Vegetais/química , Verduras/química , Culinária , Glucosinolatos/análise , Humanos , Hidrólise , Isotiocianatos/química
3.
Sci Rep ; 6: 37631, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883018

RESUMO

Isothiocyanates are the most intensively studied breakdown products of glucosinolates from Brassica plants and well recognized for their pleiotropic effects against cancer but also for their genotoxic potential. However, knowledge about the bioactivity of glucosinolate-borne nitriles in foods is very poor. As determined by GC-MS, broccoli glucosinolates mainly degrade to nitriles as breakdown products. The cytotoxicity of nitriles in human HepG2 cells and primary murine hepatocytes was marginal as compared to isothiocyanates. Toxicity of nitriles was not enhanced in CYP2E1-overexpressing HepG2 cells. In contrast, the genotoxic potential of nitriles was found to be comparable to isothiocyanates. DNA damage was persistent over a certain time period and CYP2E1-overexpression further increased the genotoxic potential of the nitriles. Based on actual in vitro data, no indications are given that food-borne nitriles could be relevant for cancer prevention, but could pose a certain genotoxic risk under conditions relevant for food consumption.


Assuntos
Alimentos , Fígado/metabolismo , Modelos Biológicos , Mutagênicos/toxicidade , Nitrilas/toxicidade , Animais , Brassicaceae/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Glucosinolatos/química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Isotiocianatos/toxicidade , Fígado/efeitos dos fármacos , Camundongos , Nitrilas/química , Transfecção , Verduras/química
4.
Mol Nutr Food Res ; 59(11): 2178-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26251050

RESUMO

SCOPE: Glucosinolates are secondary metabolites present in Brassica vegetables. Alkenyl glucosinolates are enzymatically degraded forming nitriles or isothiocyanates, but in the presence of epithiospecifier protein, epithionitriles are released. However, studies on the occurrence of epithionitriles in Brassica food and knowledge about their biological effects are scarce. METHODS AND RESULTS: Epithionitrile formation from glucosinolates of seven Brassica vegetables was analyzed using GC-MS and HPLC-DAD. Bioactivity of synthetic and plant-derived 1-cyano-2,3-epithiopropane (CETP) - the predominant epithionitrile in Brassica vegetables - in three human hepatocellular carcinoma (HCC) cell lines and primary murine hepatocytes was also evaluated. The majority of the Brassica vegetables were producers of nitriles or epithionitriles as hydrolysis products and not of isothiocyanates. For example, Brussels sprouts and savoy cabbage contained up to 0.8 µmol CETP/g vegetable. Using formazan dye assays, concentrations of 380-1500 nM CETP were observed to inhibit the mitochondrial dehydrogenase activity of human HCC cells without impairment of cell growth. At 100-fold higher CETP concentrations, cell death was observed. Presence of plant matrix increased CETP-based toxicity. CONCLUSION: These in vitro data provide no indication that epithionitriles will severely affect human health by Brassica consumption. In contrast to isothiocyanates, no evidence of selective toxicity against HCC cells was found.


Assuntos
Apoptose/efeitos dos fármacos , Brassica/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Nitrilas/farmacologia , Propano/análogos & derivados , Compostos de Sulfidrila/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Necrose , Nitrilas/análise , Oxirredução , Extratos Vegetais/análise , Propano/análise , Propano/farmacologia , Compostos de Sulfidrila/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA