Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 345: 122613, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582393

RESUMO

Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Transdução de Sinais , MicroRNAs/metabolismo , RNA não Traduzido/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
2.
Food Funct ; 14(10): 4734-4751, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37114361

RESUMO

Pharmacological activation of nuclear factor erythroid 2 related factor 2 (NRF2) provides protection against several environmental diseases by inhibiting oxidative and inflammatory injury. Besides high in protein and minerals, Moringa oleifera leaves contain several bioactive compounds, predominantly isothiocyanate moringin and polyphenols, which are potent inducers of NRF2. Hence, M. oleifera leaves represent a valuable food source that could be developed as a functional food for targeting NRF2 signaling. In the current study, we have developed a palatable M. oleifera leaf preparation (henceforth referred as ME-D) that showed reproducibly a high potential to activate NRF2. Treatment of BEAS-2B cells with ME-D significantly increased NRF2-regulated antioxidant genes (NQO1, HMOX1) and total GSH levels. In the presence of brusatol (a NRF2 inhibitor), ME-D-induced increase in NQO1 expression was significantly diminished. Pre-treatment of cells with ME-D mitigated reactive oxygen species, lipid peroxidation and cytotoxicity induced by pro-oxidants. Furthermore, ME-D pre-treatment markedly inhibited nitric oxide production, secretory IL-6 and TNF-α levels, and transcriptional expression of Nos2, Il-6, and Tnf-α in macrophages exposed to lipopolysaccharide. Biochemical profiling by LC-HRMS revealed glucomoringin, moringin, and several polyphenols in ME-D. Oral administration of ME-D significantly increased NRF2-regulated antioxidant genes in the small intestine, liver, and lungs. Lastly, prophylactic administration of ME-D significantly mitigated lung inflammation in mice exposed to particulate matter for 3-days or 3-months. In conclusion, we have developed a pharmacologically active standardized palatable preparation of M. oleifera leaves as a functional food to activate NRF2 signaling, which can be consumed as a beverage (hot soup) or freeze-dried powder for reducing the risk from environmental respiratory disease.


Assuntos
Antioxidantes , Moringa oleifera , Camundongos , Animais , Antioxidantes/farmacologia , Moringa oleifera/química , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6 , Alimento Funcional , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio
3.
Polymers (Basel) ; 15(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850263

RESUMO

The "Warburg effect" provides a novel method for treating cancer cell metabolism. Overexpression of glucose transporter 1 (GLUT1), activation of AMP-activated protein kinase (AMPK), and downregulation of mammalian target of rapamycin (mTOR) have been identified as biomarkers of abnormal cancer cell metabolism. Metformin (MET) is an effective therapy for breast cancer (BC), but its efficacy is largely reliant on the concentration of glucose at the tumor site. We propose a WZB117 (a GLUT1 inhibitor)-OCMC (O-carboxymethyl-chitosan)-MET combo strategy for simultaneous GLUT1 and mTOR targeting for alteration of BC metabolism. WZB117 conjugated polymeric nanoparticles were 225.67 ± 11.5 nm in size, with a PDI of 0.113 ± 0.16, and an encapsulation of 72.78 6.4%. OCMC pH-dependently and selectively releases MET at the tumor site. MET targets the mTOR pathway in cancer cells, and WZB117 targets BCL2 to alter GLUT1 at the cancer site. WZB117-OCMC-MET overcomes the limitations of MET monotherapy by targeting mTOR and BCL2 synergistically. WZB117-OCMC-MET activates AMPK and suppresses mTOR in a Western blot experiment, indicating growth-inhibitory and apoptotic characteristics. AO/EB and the cell cycle enhance cellular internalization as compared to MET alone. WZB117-OCMC-MET affects cancer cells' metabolism and is a promising BC therapeutic strategy.

4.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771058

RESUMO

DATS (diallyl trisulfide), an anti-oxidant and cytotoxic chemical derived from the plant garlic, has been found to have potential therapeutic activity against triple-negative breast cancer (TNBC). Its hydrophobicity, short half-life, lack of target selectivity, and limited bioavailability at the tumor site limit its efficacy in treating TNBC. Overexpression of the Folate receptor on the surface of TNBC is a well-known target receptor for overcoming off-targeting, and lipid nanoparticles solve the limitations of limited bioavailability and short half-life. In order to overcome these constraints, we developed folic acid (FA)-conjugated DATS-SLNs in this research. The design of experiment (DoE) method was employed to optimize the FA-DATS-SLNs' nanoformulation, which resulted in a particle size of 168.2 ± 3.78 nm and a DATS entrapment of 71.91 ± 6.27%. The similarity index between MCF-7 and MDA-MB-231 cell lines demonstrates that FA-DATS-SLNs are more therapeutically efficacious in the treatment of aggravating TNBC. Higher cellular internalization and efficient Bcl2 protein downregulation support the hypothesis that functionalization of the FA on the surface of DATS-SLNs improves anticancer efficacy when compared with DATS and DATS-SLNs. FA-functionalized DATS-SLNs have demonstrated to be a promising therapeutic strategy for TNBC management.


Assuntos
Compostos Alílicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Apoptose , Sulfetos/farmacologia , Compostos Alílicos/farmacologia
5.
J Drug Deliv Sci Technol ; 74: 103541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35774068

RESUMO

Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.

6.
Curr Probl Cancer ; 44(1): 100488, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31235186

RESUMO

Metformin, a well-acknowledged biguanide, safety profile and multiaction drug with low cost for management of type 2 diabetes, makes a first-class candidate for repurposing. The off-patent drug draws huge attention for repositioned for anticancer drug delivery recently. Still few unanswered questions are challenging, among them one leading question; can metformin use as a generic therapy for all breast cancer subtypes? And is metformin able to get over the problem of drug resistance? The review focused on the mechanisms of metformin action specifically for breast cancer therapy and overcoming the resistance; also discusses preclinical and ongoing and completed clinical trials. The existing limitation such as therapeutic dose specifically for cancer treatment, resistance of metformin in breast cancer and organic cation transporters heterogeneity of the drug opens up a new pathway for improved understanding and successful application as repurposed effective chemotherapeutics for breast cancer. However, much more additional research is needed to confirm the accurate efficacy of metformin treatment for prevention of cancer and its recurrence.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/terapia , Metformina/uso terapêutico , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia/prevenção & controle , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Ensaios Clínicos como Assunto , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Humanos , Mastectomia , Metformina/farmacologia , Camundongos , Recidiva Local de Neoplasia/epidemiologia , Proteínas de Transporte de Cátions Orgânicos/genética , Intervalo Livre de Progressão , Efeito Warburg em Oncologia/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Assay Drug Dev Technol ; 17(4): 201-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31100018

RESUMO

An attempt has been made to prepare solid self-nanoemulsifying drug delivery system (SNEDDS) of polypeptide-k (PPK) and curcumin (CRM) using Labrafil M1944 CS as oil, Tween-80 as surfactant, Transcutol P as cosurfactant and Aerosil-200 (A-200) as porous hydrophobic carrier for improving their antidiabetic potential through oral delivery. Box-Behnken Design was used to optimize the liquid formulation based on the results of the mean droplet size, polydispersity index, percentage drug loading, and zeta potential. The formulation was adsorbed on Aerosil-200 through spray drying. The formulation showed desirable micromeritic, disintegration, and dissolution properties. About fivefold rise in the dissolution and permeation rate for drugs was observed from formulations vis a vis their unprocessed forms. The formulation was found to be stable with variation in pH, dilution, and temperature. The individual solid SNEDDS formulation of PPK and CRM and their combination were evaluated for antidiabetic potential and the results were compared with their naive forms on streptozotocin-induced diabetic rats. The results revealed better control of serum glucose level and other biochemical tests, such as liver parameters, lipid profiles, and antioxidant levels, as well as histological evaluation of pancreatic tissues in all the solid SNEDDS formulation as compared with their naive forms.


Assuntos
Curcumina , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Hipoglicemiantes , Nanopartículas/química , Peptídeos , Administração Oral , Animais , Curcumina/administração & dosagem , Curcumina/farmacocinética , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Composição de Medicamentos , Emulsões/química , Concentração de Íons de Hidrogênio , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Tamanho da Partícula , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Ratos , Solubilidade , Estreptozocina , Propriedades de Superfície , Comprimidos , Termodinâmica
8.
Assay Drug Dev Technol ; 17(4): 178-190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30835139

RESUMO

Retinopathy is one of the most common complications of diabetes. Approximately 80% of patients with diabetes history for over 10 years suffer from some degree of diabetic retinopathy (DR). Currently available treatments include use of antivascular endothelial growth factor-165 (VEGF165) agents or steroids. However, they are very expensive, involve an invasive procedure that is painful, and show ocular and systemic complications. Currently, the focus for treatment of such disorders has shifted from new drug discovery to repositioning of available drugs because of the cost and time consumption involved in the former. Working on this strategy, itraconazole (ITR) was selected for treatment of DR due to its potent unutilized antiangiogenic activity for the management of DR. An attempt was made to develop a topical, noninvasive nanostructured lipid carrier (NLC) owing to the potential to carry entrapped drug across the membranes. ITR-NLCs were prepared using high-pressure homogenization by applying Box-Behnken design for optimization. Surface of NLCs was modified by chitosan (CS) coating. ITR-NLCs were examined for antiangiogenic potential and their VEGF165 targeting efficiency. Drug-loaded NLC showed desired particle size, zeta potential, and polydispersity index. In VEGF-induced DR rats, ITR and CS-ITR-NLCs were found to exhibit an antineovascularization effect by targeting VEGF165. The developed CS-ITR-NLC proved to be an effective topical therapy for management of DR, offering the advantages of cost-effectiveness, higher patient compliance, and better tolerance.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Itraconazol/uso terapêutico , Lipídeos/química , Nanoestruturas/química , Neovascularização Retiniana/tratamento farmacológico , Inibidores da Angiogênese/química , Animais , Galinhas , Modelos Animais de Doenças , Portadores de Fármacos/química , Cabras , Itraconazol/química , Tamanho da Partícula , Ratos , Propriedades de Superfície
9.
Drug Dev Ind Pharm ; 45(7): 1061-1072, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30922126

RESUMO

Growing evidence suggest that Alzheimer's disease (AD), the most common cause of dementia among the elderly is a metabolic disorder associated with impaired brain insulin signaling. Hence, the diabetic drug can be a therapeutic option for the management AD. The researches in this area are ongoing and Pioglitazone (PIO) is one of the most investigated diabetic drug in AD. Eventhough PIO treatment was found to improve AD significantly in the preclinical models, the poor blood-brain barrier (BBB) permeability and serious peripheral side effects limited its success in the clinical trials. The objective of the present study was to formulate and optimize intranasal (IN) nano lipid carriers (NLC) of PIO for its targeted delivery to the brain. A Box-Behnken design was employed to optimize the effect of three independent variables on two dependent variables. The optimized formulation had a particle size (PS) of 211.4 ± 3.54 nm and zeta potential of (ZP) of 14.9 ± 1.09 mv. The polydispersibility index (PDI) and entrapment efficiency (EE) was found to be 0.257 ± 0.108 and 70.18 ± 4.5% respectively. Storage stability studies performed has confirmed the stability of NLCs at 4 °C and 25 °C. The in-vitro drug release study has exhibited a sustained release of drug from the NLC. The formulation was observed to improve the nasal permeability of PIO ex-vivo significantly. Toxicity studies were performed to confirm the safety of formulation for the in-vivo administration. In-vivo biodistribution study in rats has shown a direct transport of drug from the nose to brain from the IN-NLC.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Pioglitazona/química , Pioglitazona/farmacologia , Administração Intranasal , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Nanoestruturas/química , Mucosa Nasal/metabolismo , Tamanho da Partícula , Ratos , Ratos Wistar , Ovinos , Distribuição Tecidual/efeitos dos fármacos
10.
Int J Biol Macromol ; 107(Pt A): 906-919, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28935537

RESUMO

Breast cancer is one of the leading reasons for the morbidity and mortality of cancer related death globally. The modern therapies are basically the combination of the breast-preserving surgeries or ablation with or without node biopsy or destroying the carcinoma cells adjuvant with chemotherapy, radiotherapy, hormonal or biological therapies depending upon the nature of the receptor of the cancerous cells, nature of the lymph node, as well as the tendency of the recurrence. For decade's carcinoma management suffered by the limitation of imagining, targeting and penetrability problem associated with management and cure of this deadly disease leads to unwanted chemo-toxicity and side effects. Alike other antibody mimetics, affibodies are designed with the combinatorial protein engineering approaches which are small and robust protein scaffolds retaining the favorable folding and stability. Affibody is one of the significantly important tools for imaging and diagnosis of the affinity specific over expressed proteins in the breast cancer management. The review summarizes the various affibody strategies uses in the management of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Linfonodos/diagnóstico por imagem , Imagem Molecular/métodos , Proteínas Recombinantes de Fusão/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Linfonodos/patologia , Engenharia de Proteínas
11.
Artif Cells Nanomed Biotechnol ; 45(3): 474-488, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27112220

RESUMO

The current work was carried out by the principles of quality-by-design approach to develop an optimized solid lipid nanoparticles (SLNs) formulation of diallyl disulfide (DADS) through systematic statistical study. And its antitumor activity of DADS was also evaluated on breast cancer cell lines. To understand the effect of formulation variables (critical parameters) on the responses (critical quality attributes) of SLN, a 3-factor, 3-level Box-Behnken design, was explored to predict the responses such as particle size (Y1) and % entrapment efficiency (EE) (Y2) when concentration of surfactant (X1), amount of lipid (X2), and volume of solvent (X3) were selected as independent variables. Particle size analysis revealed that all the batches were within the nanometer range. DADS was released from the SLN much more rapidly at pH 4.5 than at pH 7.4, which is a desirable characteristic for tumor-targeted drug delivery. The cytotoxicity, reactive oxygen species (ROS), determination revealed that the antitumor activity of DADS is enhanced with SLN compared to DADS-free drug, and apoptosis is the mechanism underlying the cytotoxicity. The present study indicated the remarkable potential of DADS-SLN in enhancing the anticancer effect of DADS in breast cancer cells in vitro.


Assuntos
Compostos Alílicos/farmacologia , Antineoplásicos/farmacologia , Dissulfetos/farmacologia , Portadores de Fármacos , Nanopartículas/química , Ácido Palmítico/química , Tensoativos/química , Compostos Alílicos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Relação Dose-Resposta a Droga , Composição de Medicamentos , Liberação Controlada de Fármacos , Análise Fatorial , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Células MCF-7 , Nanopartículas/ultraestrutura , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ácido Palmítico/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Tensoativos/metabolismo
12.
Drug Deliv ; 23(4): 1291-305, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26430913

RESUMO

Breast cancer is the second leading cancer-related disease as the most common non-cutaneous malignancy among women. Curative options for breast cancer are limited, therapeutically substantial and associated with toxicities. Emerging nanotechnologies exhibited the possibility to treat or target breast cancer. Among the nanoparticles, various lipid nanoparticles namely, liposomes, solid lipid nanoparticles, nanostructured lipid carriers and lipid polymer hybrid nanoparticles have been developed over the years for the breast cancer therapy and evidences are documented. Concepts are confined in lab scale, which needs to be transferred to large scale to develop active targeting nanomedicine for the clinical utility. So, the present review highlights the recently published studies in the development of lipid-based nanocarriers for breast cancer treatment.


Assuntos
Neoplasias da Mama/química , Lipídeos/química , Nanopartículas/química , Nanoestruturas/química , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Feminino , Humanos , Lipossomos , Nanotecnologia
13.
Drug Deliv ; 23(8): 2902-2910, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26634385

RESUMO

5-Fluorouracil (5-FU) is one among the anti-cancer agents in FOLFORINOX treatment along with oxaliplatin and irinotecan for the treatment of colorectal cancer. Despite its potential activity on the tumor cells, it lacks site specificity partly attributed by its biodistribution to healthy cells resulting in toxic effects to healthy cells. Therefore, we have formulated 5-fluorouracil enteric-coated nanoparticles (5-FUEC) to localize the drug in the colon area that enables its prolonged presence in target area in a sustained manner. The current work emphasizes on enhanced anti-cancer activity of 5-FUEC sequencing its apoptotic activity on HCT 116 colorectal cancer cell lines in vitro. MTT assay exhibited 5.5-fold decrease in IC50 value of nanoparticles comparable to 5-FU. Nuclear fragmentation with irregular edges in nucleus of cells justified its improved activity. Furthermore, flow cytometric analysis confirms the majority of cells gated in early apoptotic (39.75%) and late apoptotic phase (36.25%). Acridine orange/ethidium bromide staining (AO/EB) exhibited cells with red fluorescence (indicating apoptosis) comparable to the control and 5-FU. γ-Scintigraphic studies determined the applicability and feasibility of the enteric coating with mean gastric emptying time, mean intestinal transit time and mean colon arrival time of 1.89 ± 0.03, 2.15 ± 0.05 and 4.03 ± 0.27 h, respectively. Moreover, nanoparticulate approach was found significant in reducing tumor size and volume in xenograft tumor models in vivo along with sustained release. These superior anti-cancer activities exhibited by 5-FUEC indicated that it could be a potential alternative to chemotherapy for colorectal cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/farmacologia , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Camptotecina/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Preparações de Ação Retardada/farmacologia , Fluoruracila/química , Fluoruracila/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Células HCT116 , Humanos , Irinotecano , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organoplatínicos/metabolismo , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Distribuição Tecidual
14.
Curr Drug Deliv ; 9(4): 405-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22520069

RESUMO

In patients with diabetes, hyperglycemia is known to promote high levels of diacylglycerol which activates protein kinase C (PKC) in the vascular tissues and leads to the production of vascular endothelial growth factor (VEGF) in the retina. PKC activation and increased concentration of VEGF are likely to play a key role in diabetic microvascular complications, particularly change in vascular permeability, inflammation, fluid leakage and ischemia in the retina. PKC comprises a super family of isoenzymes that is activated in response to various stimuli. The PKC family consists of 12 isomers that possess distinct differences in structure, substrate requirement, expression and localization. PKC isomer selective inhibitors and VEGF trap are likely to be new therapeutics, which can delay the onset or stop the progression of diabetic vascular disease. A new promising therapy for diabetic retinopathy is undergoing Phase III trials, in which they proposed to target PKC ßII isomer using Ruboxistaurin by oral administration. Besides retina, PKC ßII isomer is found in higher concentration in brain, spleen, etc. So, oral targeting may be a questionable approach since generalized inhibitors may prove toxic in the treatment of diabetic retinopathy and ocular delivery may be a better alternative approach.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Indóis/administração & dosagem , Indóis/farmacocinética , Maleimidas/administração & dosagem , Maleimidas/farmacocinética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Administração Oral , Animais , Ensaios Clínicos Fase III como Assunto , Retinopatia Diabética/complicações , Retinopatia Diabética/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Humanos , Hiperglicemia/complicações , Terapia de Alvo Molecular , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA