Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(37): 12798-12806, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070604

RESUMO

Detection of iron at the subcellular level in order to gain insights into its transport, storage, and therapeutic prospects to prevent cytotoxic effects of excessive iron accumulation is still a challenge. Nanoscale magnetic sector secondary ion mass spectrometry (SIMS) is an excellent candidate for subcellular mapping of elements in cells since it provides high secondary ion collection efficiency and transmission, coupled with high-lateral-resolution capabilities enabled by nanoscale primary ion beams. In this study, we developed correlative methodologies that implement SIMS high-resolution imaging technologies to study accumulation and determine subcellular localization of iron in alveolar macrophages. We employed transmission electron microscopy (TEM) and backscattered electron (BSE) microscopy to obtain structural information and high-resolution analytical tools, NanoSIMS and helium ion microscopy-SIMS (HIM-SIMS) to trace the chemical signature of iron. Chemical information from NanoSIMS was correlated with TEM data, while high-spatial-resolution ion maps from HIM-SIMS analysis were correlated with BSE structural information of the cell. NanoSIMS revealed that iron is accumulating within mitochondria, and both NanoSIMS and HIM-SIMS showed accumulation of iron in electrolucent compartments such as vacuoles, lysosomes, and lipid droplets. This study provides insights into iron metabolism at the subcellular level and has future potential in finding therapeutics to reduce the cytotoxic effects of excessive iron loading.


Assuntos
Ferro , Macrófagos Alveolares , Hélio , Pulmão , Espectrometria de Massa de Íon Secundário/métodos
2.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008583

RESUMO

The absolute concentration and the compartmentalization of analytes in cells and organelles are crucial parameters in the development of drugs and drug delivery systems, as well as in the fundamental understanding of many cellular processes. Nanoscale secondary ion mass spectrometry (NanoSIMS) imaging is a powerful technique which allows subcellular localization of chemical species with high spatial and mass resolution, and high sensitivity. In this study, we combined NanoSIMS imaging with spatial oversampling with transmission electron microscopy (TEM) imaging to discern the compartments (dense core and halo) of large dense core vesicles in a model cell line used to study exocytosis, and to localize 13C dopamine enrichment following 4-6 h of 150 µM 13C L-3,4-dihydroxyphenylalanine (L-DOPA) incubation. In addition, the absolute concentrations of 13C dopamine in distinct vesicle domains as well as in entire single vesicles were quantified and validated by comparison to electrochemical data. We found concentrations of 87.5 mM, 16.0 mM and 39.5 mM for the dense core, halo and the whole vesicle, respectively. This approach adds to the potential of using combined TEM and NanoSIMS imaging to perform absolute quantification and directly measure the individual contents of nanometer-scale organelles.


Assuntos
Dopamina/metabolismo , Animais , Linhagem Celular Tumoral , Vesículas de Núcleo Denso/metabolismo , Exocitose/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Organelas/metabolismo , Células PC12 , Ratos , Espectrometria de Massa de Íon Secundário/métodos
3.
Cancer Metab ; 5: 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093815

RESUMO

BACKGROUND: Cancer cells that enter the metastatic cascade require traits that allow them to survive within the circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing microenvironments, they also modify their metabolism and metabolite production. METHODS: A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic rewiring that occurs between primary cancers and their metastases. An "autonomous" mass spectrometry-based untargeted metabolomic workflow with integrative metabolic pathway analysis revealed a number of differentially regulated metabolites in primary mammary fat pad (MFP) tumors compared to microdissected paired lung metastases. The study was further extended to analyze metabolites in paired normal tissues which determined the potential influence of metabolites from the microenvironment. RESULTS: Metabolomic analysis revealed that multiple metabolites were increased in metastases, including cholesterol sulfate and phospholipids (phosphatidylglycerols and phosphatidylethanolamine). Metabolite analysis of normal lung tissue in the mouse model also revealed increased levels of these metabolites compared to tissues from normal MFP and primary MFP tumors, indicating potential extracellular uptake by cancer cells in lung metastases. These results indicate a potential functional importance of cholesterol sulfate and phospholipids in propagating metastasis. In addition, metabolites involved in DNA/RNA synthesis and the TCA cycle were decreased in lung metastases compared to primary MFP tumors. CONCLUSIONS: Using an integrated metabolomic workflow, this study identified a link between cholesterol sulfate and phospholipids, metabolic characteristics of the metastatic niche, and the capacity of tumor cells to colonize distant sites.

4.
ACS Nano ; 11(4): 3446-3455, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27997789

RESUMO

We report an approach to spatially resolve the content across nanometer neuroendocrine vesicles in nerve-like cells by correlating super high-resolution mass spectrometry imaging, NanoSIMS, with transmission electron microscopy (TEM). Furthermore, intracellular electrochemical cytometry at nanotip electrodes is used to count the number of molecules in individual vesicles to compare to imaged amounts in vesicles. Correlation between the NanoSIMS and TEM provides nanometer resolution of the inner structure of these organelles. Moreover, correlation with electrochemical methods provides a means to quantify and relate vesicle neurotransmitter content and release, which is used to explain the slow transfer of dopamine between vesicular compartments. These nanoanalytical tools reveal that dopamine loading/unloading between vesicular compartments, dense core and halo solution, is a kinetically limited process. The combination of NanoSIMS and TEM has been used to show the distribution profile of newly synthesized dopamine across individual vesicles. Our findings suggest that the vesicle inner morphology might regulate the neurotransmitter release event during open and closed exocytosis from dense core vesicles with hours of equilibrium needed to move significant amounts of catecholamine from the protein dense core despite its nanometer size.


Assuntos
Dopamina/análise , Nanoestruturas/química , Nanotecnologia , Animais , Catecolaminas/química , Catecolaminas/isolamento & purificação , Portadores de Fármacos/química , Eletrodos , Exocitose , Microscopia Eletrônica de Transmissão , Neurotransmissores/química , Neurotransmissores/metabolismo , Células PC12 , Tamanho da Partícula , Ratos , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície
5.
Sci Rep ; 6: 33702, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27650365

RESUMO

Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Animais , Neurônios/citologia , Células PC12 , Ratos
6.
Anal Chem ; 87(21): 10935-41, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26434689

RESUMO

Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.


Assuntos
Metabolômica , Temperatura , Sangue , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray
7.
Chem Biol ; 21(11): 1575-84, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457182

RESUMO

Historically, studies of brain metabolism have been based on targeted analyses of a limited number of metabolites. Here we present an untargeted mass spectrometry-based metabolomic strategy that has successfully uncovered differences in a broad array of metabolites across anatomical regions of the mouse brain. The NSG immunodeficient mouse model was chosen because of its ability to undergo humanization leading to numerous applications in oncology and infectious disease research. Metabolic phenotyping by hydrophilic interaction liquid chromatography and nanostructure imaging mass spectrometry revealed both water-soluble and lipid metabolite patterns across brain regions. Neurochemical differences in metabolic phenotypes were mainly defined by various phospholipids and several intriguing metabolites including carnosine, cholesterol sulfate, lipoamino acids, uric acid, and sialic acid, whose physiological roles in brain metabolism are poorly understood. This study helps define regional homeostasis for the normal mouse brain to give context to the reaction to pathological events.


Assuntos
Encéfalo/metabolismo , Metabolômica , Animais , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Interações Hidrofóbicas e Hidrofílicas , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Nanoestruturas/química , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
8.
Anal Chem ; 86(14): 6931-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24934772

RESUMO

XCMS Online (xcmsonline.scripps.edu) is a cloud-based informatic platform designed to process and visualize mass-spectrometry-based, untargeted metabolomic data. Initially, the platform was developed for two-group comparisons to match the independent, "control" versus "disease" experimental design. Here, we introduce an enhanced XCMS Online interface that enables users to perform dependent (paired) two-group comparisons, meta-analysis, and multigroup comparisons, with comprehensive statistical output and interactive visualization tools. Newly incorporated statistical tests cover a wide array of univariate analyses. Multigroup comparison allows for the identification of differentially expressed metabolite features across multiple classes of data while higher order meta-analysis facilitates the identification of shared metabolic patterns across multiple two-group comparisons. Given the complexity of these data sets, we have developed an interactive platform where users can monitor the statistical output of univariate (cloud plots) and multivariate (PCA plots) data analysis in real time by adjusting the threshold and range of various parameters. On the interactive cloud plot, metabolite features can be filtered out by their significance level (p-value), fold change, mass-to-charge ratio, retention time, and intensity. The variation pattern of each feature can be visualized on both extracted-ion chromatograms and box plots. The interactive principal component analysis includes scores, loadings, and scree plots that can be adjusted depending on scaling criteria. The utility of XCMS functionalities is demonstrated through the metabolomic analysis of bacterial stress response and the comparison of lymphoblastic leukemia cell lines.


Assuntos
Interpretação Estatística de Dados , Espectrometria de Massas , Metabolômica/métodos , Interface Usuário-Computador , Sangue/metabolismo , Bases de Dados Factuais , Desulfovibrio/metabolismo , Feminino , Humanos , Internet , Linfoma/metabolismo , Masculino , Metanálise como Assunto , Análise Multivariada , Análise de Componente Principal , Software
9.
Sci Rep ; 4: 3847, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24457949

RESUMO

The details of exocytosis, the vital cell process of neuronal communication, are still under debate with two generally accepted scenarios. The first mode of release involves secretory vesicles distending into the cell membrane to release the complete vesicle contents. The second involves partial release of the vesicle content through an intermittent fusion pore, or an opened or partially distended fusion pore. Here we show that both full and partial release can be mimicked with a single large-scale cell model for exocytosis composed of material from blebbing cell plasma membrane. The apparent switching mechanism for determining the mode of release is demonstrated to be related to membrane tension that can be differentially induced during artificial exocytosis. These results suggest that the partial distension mode might correspond to an extended kiss-and-run mechanism of release from secretory cells, which has been proposed as a major pathway of exocytosis in neurons and neuroendocrine cells.


Assuntos
Células Artificiais/metabolismo , Membrana Celular/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/metabolismo , Animais , Fusão de Membrana/fisiologia , Células PC12 , Ratos
10.
Sci Rep ; 2: 824, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139869

RESUMO

We present an amperometric study of content release from individual vesicles in an artificial secretory cell designed with the minimal components required to carry out exocytosis. Here, the membranes of the cell and vesicles are substituted for protein-free giant and large unilamellar vesicles respectively. In replacement of the SNARE-complex, the cell model was equipped with an analog composed of complimentary DNA constructs. The DNA constructs hybridize in a zipper-like fashion to bring about docking of the artificial secretory vesicles and following the addition of Ca(2+ )artificial exocytosis was completed. Exocytotic events recorded from the artificial cell closely approximate exocytosis in live cells. The results together with simulations of vesicular release demonstrate that the molecular flux in this model is attenuated and we suggest that this is the result of restricted diffusion through a semi-stable fusion pore or a partitioning of the signalling molecule out of the fused vesicle membrane.


Assuntos
Vesículas Secretórias/fisiologia , Lipossomas Unilamelares/metabolismo , Animais , Cálcio/metabolismo , Colesterol/química , DNA/química , Técnicas Eletroquímicas , Eletrodos , Exocitose , Modelos Biológicos , Células PC12 , Ratos , Proteínas SNARE/metabolismo
11.
Anal Chem ; 82(15): 6652-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20593800

RESUMO

An in situ freeze fracture device featuring a spring-loaded trap system has been designed and characterized for time of flight secondary ion mass spectrometry (TOF SIMS) analysis of single cells. The device employs the sandwich assembly, which is typically used in freeze fracture TOF SIMS experiments to prepare frozen, hydrated cells for high-resolution SIMS imaging. The addition of the spring-loaded trap system to the sandwich assembly offers two advances to this sample preparation method. First, mechanizing the fracture by adding a spring standardizes each fracture by removing the need to manually remove the top of the sandwich assembly with a cryogenically cooled knife. A second advance is brought about because the top of the sandwich is not discarded after the sandwich assembly has been fractured. This results in two imaging surfaces effectively doubling the sample size and providing the unique ability to image both sections of a cell bifurcated by the fracture. Here, we report TOF SIMS analysis of freeze fractured rat pheochromocytoma (PC12) cells using a Bi cluster ion source. This work exhibits the ability to obtain single cell chemical images with subcellular lateral resolution from cells preserved in an ice matrix. In addition to preserving the cells, the signal from lipid fragment ions rarely identified in single cells are better observed in the freeze-fractured samples for these experiments. Furthermore, using the accepted argument that K(+) signal indicates a cell that has been fractured though the cytoplasm, we have also identified different fracture planes of cells over the surface. Coupling a mechanized freeze fracture device to high-resolution cluster SIMS imaging will provide the sensitivity and resolution as well as the number of trials required to carry out biologically relevant SIMS experiments.


Assuntos
Técnica de Fratura por Congelamento/métodos , Espectrometria de Massa de Íon Secundário/métodos , Animais , Células PC12 , Fosfatidiletanolaminas/química , Fosforilcolina/química , Potássio/química , Ratos , Espectrometria de Massa de Íon Secundário/instrumentação
12.
Anal Chem ; 80(22): 8662-7, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18925746

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) can be utilized to map the distribution of various molecules on a surface with submicrometer resolution. Much of its biological application has been in the study of membrane lipids, such as phospholipids and cholesterol. Cholesterol is a particularly interesting molecule due to its involvement in numerous biological processes. For many studies, the effectiveness of chemical mapping is limited by low signal intensity from various biomolecules. Because of the high energy nature of the SIMS ionization process, many molecules are identified by detection of characteristic fragments. Commonly, fragments of a molecule are identified using standard samples, and those fragments are used to map the location of the molecule. In this work, MS/MS data obtained from a prototype C60(+)/quadrupole time-of-flight mass spectrometer was used in conjunction with indium LMIG imaging to map previously unrecognized cholesterol fragments in single cells. A model system of J774 macrophages doped with cholesterol was used to show that these fragments are derived from cholesterol in cell imaging experiments. Examination of relative quantification experiments reveals that m/z 147 is the most specific diagnostic fragment and offers a 3-fold signal enhancement. These findings greatly increase the prospects for cholesterol mapping experiments in biological samples, particularly with single cell experiments. In addition, these findings demonstrate the wealth of information that is hidden in the traditional TOF-SIMS spectrum.


Assuntos
Colesterol/análise , Espaço Intracelular/química , Espectrometria de Massas em Tandem/métodos , Colesterol/química , Macrófagos/citologia , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
BMC Dev Biol ; 8: 120, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19117526

RESUMO

BACKGROUND: Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. RESULTS: We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. CONCLUSION: In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.


Assuntos
Movimento Celular/fisiologia , Colesterol/metabolismo , Células Germinativas/citologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Animais , Apoptose , Sobrevivência Celular , Embrião de Mamíferos/metabolismo , Feminino , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos
14.
Anal Chem ; 79(10): 3554-60, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17428032

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established bioanalytical method for directly imaging the chemical distribution across single cells. Here we report a protocol for the use of SIMS imaging to comparatively quantify the relative difference in cholesterol level between the plasma membranes of two cells. It should be possible to apply this procedure to the study of other selected lipids. This development enables direct comparison of the chemical effects of different drug treatments and incubation conditions in the plasma membrane at the single-cell level. Relative, quantitative TOF-SIMS imaging has been used here to compare macrophage cells treated to contain elevated levels of cholesterol with respect to control cells. In situ fluorescence microscopy with two different membrane dyes was used to discriminate morphologically similar but differentially treated cells prior to SIMS analysis. SIMS images of fluorescently identified cells reveal that the two populations of cells have distinct outer leaflet membrane compositions with the membranes of the cholesterol-treated macrophages containing more than twice the amount of cholesterol of control macrophages. Relative quantification with SIMS to compare the chemical composition of single cells can provide valuable information about normal biological functions, causative agents of diseases, and possible therapies for diseases.


Assuntos
Membrana Celular/química , Colesterol/análise , Diagnóstico por Imagem/métodos , Espectrometria de Massa de Íon Secundário/métodos , Técnicas Citológicas , Humanos , Macrófagos , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA