Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Cardiovasc Pharmacol ; 80(4): 547-561, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522143

RESUMO

ABSTRACT: Modern cancer therapies have significantly improved survival leading to a growing population of cancer survivors. Similarly, both conventional and newer treatments are associated with a spectrum of cardiovascular disorders with potential long-term sequelae. Prompt detection and treatment of these complications is, therefore, pivotal to enable healthy survivorship and reduce cardiovascular morbidity. Advanced multimodality imaging is a valuable tool for stratifying patient risk, identifying cardiovascular toxicity during and after therapy, and predicting recovery. This review summarizes the potential cardiotoxic complications of anticancer therapies and the multimodality approaches available in each case with special focus on newer techniques and the added value of biomarkers ultimately leading to earlier diagnosis and better prognostication.


Assuntos
Antineoplásicos , Doenças Cardiovasculares , Sistema Cardiovascular , Neoplasias , Antineoplásicos/efeitos adversos , Biomarcadores , Cardiotoxicidade/etiologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/diagnóstico por imagem , Humanos , Neoplasias/complicações , Neoplasias/tratamento farmacológico
3.
Front Cardiovasc Med ; 8: 764599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950713

RESUMO

Background: Acute myocardial damage is common in severe COVID-19. Post-mortem studies have implicated microvascular thrombosis, with cardiovascular magnetic resonance (CMR) demonstrating a high prevalence of myocardial infarction and myocarditis-like scar. The microcirculatory sequelae are incompletely characterized. Perfusion CMR can quantify the stress myocardial blood flow (MBF) and identify its association with infarction and myocarditis. Objectives: To determine the impact of the severe hospitalized COVID-19 on global and regional myocardial perfusion in recovered patients. Methods: A case-control study of previously hospitalized, troponin-positive COVID-19 patients was undertaken. The results were compared with a propensity-matched, pre-COVID chest pain cohort (referred for clinical CMR; angiography subsequently demonstrating unobstructed coronary arteries) and 27 healthy volunteers (HV). The analysis used visual assessment for the regional perfusion defects and AI-based segmentation to derive the global and regional stress and rest MBF. Results: Ninety recovered post-COVID patients {median age 64 [interquartile range (IQR) 54-71] years, 83% male, 44% requiring the intensive care unit (ICU)} underwent adenosine-stress perfusion CMR at a median of 61 (IQR 29-146) days post-discharge. The mean left ventricular ejection fraction (LVEF) was 67 ± 10%; 10 (11%) with impaired LVEF. Fifty patients (56%) had late gadolinium enhancement (LGE); 15 (17%) had infarct-pattern, 31 (34%) had non-ischemic, and 4 (4.4%) had mixed pattern LGE. Thirty-two patients (36%) had adenosine-induced regional perfusion defects, 26 out of 32 with at least one segment without prior infarction. The global stress MBF in post-COVID patients was similar to the age-, sex- and co-morbidities of the matched controls (2.53 ± 0.77 vs. 2.52 ± 0.79 ml/g/min, p = 0.10), though lower than HV (3.00 ± 0.76 ml/g/min, p< 0.01). Conclusions: After severe hospitalized COVID-19 infection, patients who attended clinical ischemia testing had little evidence of significant microvascular disease at 2 months post-discharge. The high prevalence of regional inducible ischemia and/or infarction (nearly 40%) may suggest that occult coronary disease is an important putative mechanism for troponin elevation in this cohort. This should be considered hypothesis-generating for future studies which combine ischemia and anatomical assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA