Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Mol Pharmacol ; 14(2): 253-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32310055

RESUMO

AIMS: To show that acetate attenuates neuroinflammatory responses in activated microglia. BACKGROUND: Dietary acetate supplementation alleviates neuroglial activation in a rat model of neuroinflammation induced by intraventricular administration of lipopolysaccharide (LPS). However, the precise mechanism(s) underlying the anti-inflammatory effect of acetate, is not fully understood. OBJECTIVE: To determine whether acetate has inhibitory effects on LPS-induced neuroinflammatory responses in microglia. METHODS: We examined LPS-stimulated nitric oxide (NO) production in primary rat microglia and BV-2 cells. Protein expression of inducible NO synthase (iNOS) was determined by western blot analysis. The intracellular generation of reactive oxygen species (ROS) and glutathione (GSH) were also evaluated. RESULTS: In primary microglia, acetate decreased LPS-stimulated NO production in a dose-dependent manner, reaching significance at greater than 10 mM, and cell viability was not affected. Acetate suppressed LPS-induced expression of iNOS protein concomitantly with the decrease in NO. The LPS-induced increase in intracellular ROS production was attenuated by acetate. In addition, acetate prevented LPS-induced reduction of GSH. Notably, such suppressive effects of acetate on NO and ROS production were not observed in BV-2 cells. CONCLUSION: These findings suggest that acetate may alleviate neuroinflammatory responses by attenuating NO and ROS production in primary microglia but not in BV-2 cells. Other: All animals received humane care, and the animal protocols used in this study were approved by the Ethics Committees for Animal Experimentation.


Assuntos
Acetatos/farmacologia , Lipopolissacarídeos/metabolismo , Microglia/citologia , Doenças Neuroinflamatórias/metabolismo , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA