Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787071

RESUMO

Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects. Certain triterpene saponins are able to induce the endosomal escape of these type I RIPs, thus increasing their cytotoxicity. However, the molecular mechanism underlying the endosomal escape enhancement of type I RIPs by triterpene saponins has not been fully elucidated. In this report, we investigate the involvement of the basic amino acid residues of dianthin-30, a type I RIP isolated from the plant Dianthus caryophyllus L., in endosomal escape enhancement using alanine scanning. Therefore, we designed 19 alanine mutants of dianthin-30. Each mutant was combined with SO1861, a triterpene saponin isolated from the roots of Saponaria officinalis L., and subjected to a cytotoxicity screening in Neuro-2A cells. Cytotoxic screening revealed that dianthin-30 mutants with lysine substitutions did not impair the endosomal escape enhancement. There was one particular mutant dianthin, Arg24Ala, that exhibited significantly reduced synergistic cytotoxicity in three mammalian cell lines. However, this reduction was not based on an altered interaction with SO1861. It was, rather, due to the impaired endocytosis of dianthin Arg24Ala into the cells.


Assuntos
Endocitose , Saponinas , Animais , Camundongos , Saponinas/metabolismo , Arginina , Endossomos/metabolismo , Linhagem Celular Tumoral , Mutação , Análise Mutacional de DNA , Sobrevivência Celular/efeitos dos fármacos
2.
PLoS One ; 19(2): e0297924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330002

RESUMO

Acute haemorrhagic diarrhoea is a common complaint in dogs. In addition to causes like intestinal parasites, dietary indiscretion, intestinal foreign bodies, canine parvovirus infection, or hypoadrenocorticism, acute haemorrhagic diarrhoea syndrome (AHDS) is an important and sometimes life-threatening differential diagnosis. There is some evidence supporting the link between Clostridium perfringens toxins and AHDS. These toxins may be partially responsible for the epithelial cell injury, but the pathogenesis of AHDS is still not fully understood. Recent studies have suggested that severe damage to the intestinal mucosa and associated barrier dysfunction can trigger chronic gastrointestinal illnesses. Besides bloodwork and classical markers for AHDS such as protein loss and intestinal bacterial dysbiosis, we focused mainly on the plasma-proteome to identify systemic pathological alterations during this disease and searched for potential biomarkers to improve the diagnosis. To accomplish the goals, we used liquid chromatography-mass spectrometry. We compared the proteomic profiles of 20 dogs with AHDS to 20 age-, breed-, and sex-matched control dogs. All dogs were examined, and several blood work parameters were determined and compared, including plasma biochemistry and cell counts. We identified and quantified (relative quantification) 207 plasmatic proteins, from which dozens showed significantly altered levels in AHDS. Serpina3, Lipopolysaccharide-binding protein, several Ig-like domain-containing proteins, Glyceraldehyde-3-phosphate dehydrogenase and Serum amyloid A were more abundant in plasma from AHDS affected dogs. In contrast, other proteins such as Paraoxonase, Selenoprotein, Amine oxidases, and Apolipoprotein C-IV were significantly less abundant. Many of the identified and quantified proteins are known to be associated with inflammation. Other proteins like Serpina3 and RPLP1 have a relevant role in oncogenesis. Some proteins and their roles have not yet been described in dogs with diarrhoea. Our study opens new avenues that could contribute to the understanding of the aetiology and pathophysiology of AHDS.


Assuntos
Doenças do Cão , Proteoma , Cães , Animais , Proteômica , Hemorragia Gastrointestinal/microbiologia , Síndrome , Diarreia/microbiologia , Doenças do Cão/patologia
3.
Mol Syst Biol ; 20(3): 242-275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273161

RESUMO

Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation. This was conserved across cell lines and primary cells originating from epithelial tissues. Importantly, cells embedded within cellular colonies were not protected from viral infection by apical interferon treatment, demonstrating that the population context-driven heterogeneous response to interferon influences the outcome of viral infection. Our data highlights that the behavior of isolated cells does not directly translate to their behavior in a population, placing the population context as one important factor influencing heterogeneity during interferon response in epithelial cells.


Assuntos
Interferons , Viroses , Humanos , Interferons/farmacologia , Interferons/metabolismo , Células Epiteliais/metabolismo , Linhagem Celular , Viroses/metabolismo
4.
Free Radic Biol Med ; 208: 859-876, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793500

RESUMO

Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.


Assuntos
Compostos de Amônio , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/metabolismo , Urease/metabolismo , Urease/farmacologia , Estresse Oxidativo , Anti-Infecciosos/metabolismo , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Toxins (Basel) ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878187

RESUMO

Type I ribosome-inactivating proteins (RIPs) are plant toxins that inhibit protein synthesis by exerting rRNA N-glycosylase activity (EC 3.2.2.22). Due to the lack of a cell-binding domain, type I RIPs are not target cell-specific. However once linked to antibodies, so called immunotoxins, they are promising candidates for targeted anti-cancer therapy. In this study, sapovaccarin-S1 and -S2, two newly identified type I RIP isoforms differing in only one amino acid, were isolated from the seeds of Saponaria vaccaria L. Sapovaccarin-S1 and -S2 were purified using ammonium sulfate precipitation and subsequent cation exchange chromatography. The determined molecular masses of 28,763 Da and 28,793 Da are in the mass range typical for type I RIPs and the identified amino acid sequences are homologous to known type I RIPs such as dianthin 30 and saporin-S6 (79% sequence identity each). Sapovaccarin-S1 and -S2 showed adenine-releasing activity and induced cell death in Huh-7 cells. In comparison to other type I RIPs, sapovaccarin-S1 and -S2 exhibited a higher thermostability as shown by nano-differential scanning calorimetry. These results suggest that sapovaccarin-S1 and -S2 would be optimal candidates for targeted anti-cancer therapy.


Assuntos
Saponaria , Vaccaria , N-Glicosil Hidrolases/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Isoformas de Proteínas , Proteínas Inativadoras de Ribossomos/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/química , Ribossomos/metabolismo , Saponaria/química , Saponaria/metabolismo , Sementes/química
6.
BMC Ecol Evol ; 22(1): 67, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585501

RESUMO

BACKGROUND: Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS: We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.


Assuntos
Anorexia , Baratas , Alérgenos , Animais , Dieta , Comportamento Alimentar/fisiologia , Nutrientes
7.
Nucleic Acids Res ; 50(5): 2938-2958, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188580

RESUMO

Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4's intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Supressoras de Tumor/metabolismo , DNA Helicases/metabolismo , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo
8.
Curr Biol ; 32(4): 919-926.e6, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35051355

RESUMO

Cytoskeletal proteins are essential for parasite proliferation, growth, and transmission, and therefore have the potential to serve as drug targets.1-5 While microtubules and their molecular building block αß-tubulin are established drug targets in a variety of cancers,6,7 we still lack sufficient knowledge of the biochemistry of parasite tubulins to exploit the structural divergence between parasite and human tubulins. For example, it remains to be determined whether compounds of interest can specifically target parasite microtubules without affecting the host cell cytoskeleton. Such mechanistic insights have been limited by the lack of functional parasite tubulin. In this study, we report the purification and characterization of tubulin from Plasmodium falciparum, the causative agent of malaria. We show that the highly purified tubulin is fully functional, as it efficiently assembles into microtubules with specific parameters of dynamic instability. There is a high degree of amino-acid conservation between human and P. falciparum α- and ß-tubulin, sharing approximately 83.7% and 88.5% identity, respectively. However, Plasmodium tubulin is more similar to plant than to mammalian tubulin, raising the possibility of identifying compounds that would selectively disrupt parasite microtubules without affecting the host cell cytoskeleton. As a proof of principle, we describe two compounds that exhibit selective toxicity toward parasite tubulin. Thus, the ability to specifically disrupt protozoan microtubule growth without affecting human microtubules provides an exciting opportunity for the development of novel antimalarials.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Mamíferos , Microtúbulos/metabolismo , Parasitos/metabolismo , Plasmodium falciparum , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
9.
J Biol Chem ; 295(7): 2097-2112, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31914407

RESUMO

The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.


Assuntos
Splicing de RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Spliceossomos/genética , Adenosina Trifosfatases/genética , Catálise , Cristalografia por Raios X , Humanos , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/ultraestrutura , Especificidade por Substrato
10.
Circ Res ; 125(10): e43-e54, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495257

RESUMO

RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Animais , Animais Geneticamente Modificados , Neoplasias do Sistema Nervoso Central/fisiopatologia , Angiografia Cerebral/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Peixe-Zebra
11.
Front Immunol ; 9: 872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774024

RESUMO

The major histocompatibility complex of class II (MHCII) immunopeptidome represents the repertoire of antigenic peptides with the potential to activate CD4+ T cells. An understanding of how the relative abundance of specific antigenic epitopes affects the outcome of T cell responses is an important aspect of adaptive immunity and offers a venue to more rationally tailor T cell activation in the context of disease. Recent advances in mass spectrometric instrumentation, computational power, labeling strategies, and software analysis have enabled an increasing number of stratified studies on HLA ligandomes, in the context of both basic and translational research. A key challenge in the case of MHCII immunopeptidomes, often determined for different samples at distinct conditions, is to derive quantitative information on consensus epitopes from antigenic peptides of variable lengths. Here, we present the design and benchmarking of a new algorithm [peptide landscape antigenic epitope alignment utility (PLAtEAU)] allowing the identification and label-free quantification (LFQ) of shared consensus epitopes arising from series of nested peptides. The algorithm simplifies the complexity of the dataset while allowing the identification of nested peptides within relatively short segments of protein sequences. Moreover, we apply this algorithm to the comparison of the ligandomes of cell lines with two different expression levels of the peptide-exchange catalyst HLA-DM. Direct comparison of LFQ intensities determined at the peptide level is inconclusive, as most of the peptides are not significantly enriched due to poor sampling. Applying the PLAtEAU algorithm for grouping of the peptides into consensus epitopes shows that more than half of the total number of epitopes is preferentially and significantly enriched for each condition. This simplification and deconvolution of the complex and ambiguous peptide-level dataset highlights the value of the PLAtEAU algorithm in facilitating robust and accessible quantitative analysis of immunopeptidomes across cellular contexts. In silico analysis of the peptides enriched for each HLA-DM expression conditions suggests a higher affinity of the pool of peptides isolated from the high DM expression samples. Interestingly, our analysis reveals that while for certain autoimmune-relevant epitopes their presentation increases upon DM expression others are clearly edited out from the peptidome.


Assuntos
Mapeamento de Epitopos/métodos , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Algoritmos , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Simulação por Computador , Conjuntos de Dados como Assunto , Epitopos de Linfócito T/imunologia , Células HEK293 , Antígenos de Histocompatibilidade Classe II/isolamento & purificação , Humanos , Ativação Linfocitária/imunologia , Peptídeos/isolamento & purificação
12.
ACS Chem Biol ; 12(11): 2730-2736, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29043777

RESUMO

ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , ATPases Associadas a Diversas Atividades Celulares/química , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Descoberta de Drogas , Histonas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
13.
Oncoimmunology ; 6(2): e1273300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344884

RESUMO

As the blockade of inhibitory surface-molecules such as CTLA-4 on T cells has led to recent advances in antitumor immune therapy, there is great interest in identifying novel mechanisms of action of CD8+ T cells to evoke effective cytotoxic antitumor responses. Using in vitro and in vivo models, we investigated the molecular pathways underlying the CTLA-4-mediated differentiation of IL-17-producing CD8+ T cells (Tc17 cells) that strongly impairs cytotoxicity. Our studies demonstrate that Tc17 cells lacking CTLA-4 signaling have limited production of STAT3-target gene products such as IL-17, IL-21, IL-23R and RORγt. Upon re-stimulation with IL-12, these cells display fast downregulation of Tc17 hallmarks and acquire Tc1 characteristics such as IFNγ and TNF-α co-expression, which is known to correlate with tumor control. Indeed, upon adoptive transfer, these cells were highly efficient in the antigen-specific rejection of established OVA-expressing B16 melanoma in vivo. Mechanistically, in primary and re-stimulated Tc17 cells, STAT3 binding to the IL-17 promoter was strongly augmented by CTLA-4, associated with less binding of STAT5 and reduced relative activation of STAT1 which is known to block STAT3 activity. Inhibiting CTLA-4-induced STAT3 activity reverses enhancement of signature Tc17 gene products, rendering Tc17 cells susceptible to conversion to Tc1-like cells with enhanced cytotoxic potential. Thus, CTLA-4 critically shapes the characteristics of Tc17 cells by regulating relative STAT3 activation, which provides new perspectives to enhance cytotoxicity of antitumor responses.

14.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052935

RESUMO

The ß2-integrin lymphocyte function-associated antigen 1 (LFA-1) is needed for the T cell receptor (TCR)-induced activation of LFA-1 to promote T cell adhesion and interaction with antigen-presenting cells (APCs). LFA-1-mediated cell-cell interactions are critical for proper T cell differentiation and proliferation. The Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is a key regulator of TCR-mediated LFA-1 signaling (inside-out/outside-in signaling). To gain an understanding of how SKAP55 controls TCR-mediated LFA-1 activation, we assessed the functional role of its pleckstrin homology (PH) domain. We identified two critical amino acid residues within the PH domain of SKAP55, aspartic acid 120 (D120) and lysine 152 (K152). D120 facilitates the retention of SKAP55 in the cytoplasm of nonstimulated T cells, while K152 promotes SKAP55 membrane recruitment via actin binding upon TCR triggering. Importantly, the K152-dependent interaction of the PH domain with actin promotes the binding of talin to LFA-1, thus facilitating LFA-1 activation. These data suggest that K152 and D120 within the PH domain of SKAP55 regulate plasma membrane targeting and TCR-mediated activation of LFA-1.


Assuntos
Ácido Aspártico/metabolismo , Membrana Celular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Lisina/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Linfócitos T/metabolismo , Actinas/metabolismo , Adesão Celular , Humanos , Células Jurkat , Lipídeos/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/metabolismo , Relação Estrutura-Atividade , Talina/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo
15.
Proteomics ; 15(7): 1230-4, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25504886

RESUMO

Proteomics approaches using MS in combination with affinity purification have emerged as powerful tools to study protein-protein interactions. Here we make use of the specificity of sortase A transpeptidation reaction to prepare affinity matrices in which a protein bait is covalently linked to the matrix via a short C-terminal linker region. As a result of this site-directed immobilization, the bait remains functionally accessible to protein interactions. To apply this approach, we performed SILAC-based pull-down experiments and demonstrate the suitability of the approach.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Enzimas Imobilizadas/química , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Cromatografia de Afinidade , Humanos , Células Jurkat , Proteômica , Espectrometria de Massas em Tandem
16.
J Immunol ; 192(11): 5160-70, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24778440

RESUMO

Senescence or biological aging impacts a vast variety of molecular and cellular processes. To date, it is unknown whether CD4(+) Th cells display an age-dependent bias for development into specific subpopulations. In this study, we show the appearance of a distinct CD4(+) T cell subset expressing IL-4 at an early stage of development in infant adenoids and cord blood that is lost during aging. We identified by flow cytometric, fluorescent microscopic, immunoblot, and mass spectrometric analysis a population of CD4(+) T cells that expressed an unglycosylated isoform of IL-4. This T cell subpopulation was found in neonatal but not in adult CD4(+) T cells. Furthermore, we show that the mRNA of the Th2 master transcription factor GATA3 is preferentially expressed in neonatal CD4(+) T cells. The Th2 phenotype of the IL-4(+)CD4(+) T cells could be reinforced in the presence of TGF-ß. Although the IL-4(+)CD4(+) T cells most likely originate from CD31(+)CD4(+) T recent thymic emigrants, CD31 was downregulated prior to secretion of IL-4. Notably, the secretion of IL-4 requires a so far unidentified trigger in neonatal T cells. This emphasizes that cytokine expression and secretion are differentially regulated processes. Our data support the hypothesis of an endogenously poised cytokine profile in neonates and suggest a link between cytokine production and the developmental stage of an organism. The determination of the IL-4 isoform-expressing cells in humans might allow the identification of Th2 precursor cells, which could provide novel intervention strategies directed against Th2-driven immunopathologies such as allergies.


Assuntos
Interleucina-4/imunologia , Células Th2/imunologia , Feminino , Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica/imunologia , Glicosilação , Humanos , Hipersensibilidade/imunologia , Lactente , Recém-Nascido , Masculino , Isoformas de Proteínas/imunologia , Células Th2/citologia , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA