Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 340: 199301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
2.
PLoS Negl Trop Dis ; 17(11): e0011743, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939119

RESUMO

Dengue is a major health problem in tropical and subtropical regions. Some patients develop a severe form of dengue, called dengue hemorrhagic fever, which can be fatal. Severe dengue is associated with a transient increase in vascular permeability. A cytokine storm is thought to be the cause of the vascular leakage. Although there are various research reports on the pathogenic mechanism, the complete pathological process remains poorly understood. We previously reported that dengue virus (DENV) type 3 P12/08 strain caused a lethal systemic infection and severe vascular leakage in interferon (IFN)-α/ß and γ receptor knockout mice (IFN-α/ß/γRKO mice), and that blockade of TNF-α signaling protected mice. Here, we performed transcriptome analysis of liver and small intestine samples collected chronologically from P12/08-infected IFN-α/ß/γRKO mice in the presence/absence of blockade of TNF-α signaling and evaluated the cytokine and effector-level events. Blockade of TNF-α signaling mainly protected the small intestine but not the liver. Infection induced the selective expansion of IL-17A-producing Vγ4 and Vγ6 T cell receptor (TCR) γδ T cells in the small intestine, and IL-17A, together with TNF-α, played a critical role in the transition to severe disease via the induction of inflammatory cytokines such as TNF-α, IL-1ß, and particularly the excess production of IL-6. Infection also induced the infiltration of neutrophils, as well as neutrophil collagenase/matrix metalloprotease 8 production. Blockade of IL-17A signaling reduced mortality and suppressed the expression of most of these cytokines, including TNF-α, indicating that IL-17A and TNF-α synergistically enhance cytokine expression. Blockade of IL-17A prevented nuclear translocation of NF-κB p65 in stroma-like cells and epithelial cells in the small intestine but only partially prevented recruitment of immune cells to the small intestine. This study provides an overall picture of the pathogenesis of infection in individual mice at the cytokine and effector levels.


Assuntos
Dengue , Viroses , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Camundongos Knockout , Linfócitos T/metabolismo , Intestino Delgado , Viroses/patologia
3.
Biochem Biophys Res Commun ; 659: 54-61, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37037066

RESUMO

Previously, we demonstrated the utility of a recombinant chimeric flavivirus (DV2ChimV), which carries the premembrane (prM) and envelope (E) genes of a type 2 DENV clinical (Thai) isolate on a backbone of Japanese encephalitis virus, for evaluating the protective efficacy of antidengue envelope antibodies both in vitro and in vivo. Here, to assess the potential use of this model for pathological studies, we aimed to characterize interferon-α/ß-γ-receptor double-knockout mice (IFN-α/ß/γR dKO mice) infected with DV2ChimV. Vascular leakage and bone marrow suppression are unique features of severe dengue. In the current model, DV2ChimV caused vascular leakage in the liver and intestine at the moribund stage. High levels of virus were detected in the bone marrow, and strong bone marrow suppression (i.e., disappearance of megakaryocytes and erythroblastic islets) was observed. These observations suggest that the DV2ChimV-infected mouse model mimics the vascular leakage and bone marrow suppression observed in human cases.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Camundongos , Humanos , Animais , Medula Óssea/patologia , Camundongos Knockout , Anticorpos Antivirais
4.
Viruses ; 14(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016286

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease with a high case fatality rate caused by the SFTS virus, and currently there are no approved specific treatments. Neutralizing monoclonal antibodies (mAbs) against the virus could be a therapeutic agent in SFTS treatment, but their development has not sufficiently been carried out. In the present study, mouse and human mAbs exposed to the viral envelope proteins Gn and Gc (16 clones each) were characterized in vitro and in vivo by using recombinant proteins, cell culture with viruses, and an SFTS animal model with IFNAR-/- mice. Neutralization activities against the recombinant vesicular stomatitis virus bearing SFTS virus Gn/Gc as envelope proteins were observed with three anti-Gn and six anti-Gc mAbs. Therapeutic activities were observed among anti-Gn, but not anti-Gc mAbs with neutralizing activities. These results propose an effective strategy to obtain promising therapeutic mAb candidates for SFTS treatment, and a necessity to reveal precise roles of the SFTS virus Gn/Gc proteins.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas do Envelope Viral/metabolismo
5.
Ticks Tick Borne Dis ; 13(1): 101834, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656945

RESUMO

The species Keterah orthonairovirus is a member of the genus Orthonairovirus. Few studies have focused on this species, and there remains no treatment for Issyk-Kul fever, an infectious disease caused by a Keterah orthonairovirus. This study was performed to characterize this species using two viruses, Issyk-Kul virus (ISKV) and Soft tick bunyavirus (STBV), in cell culture and type I interferon receptor knockout (IFNAR-/-) mice and to evaluate the efficacy of serum transfusion using a mouse model of ISKV infection. The two viruses replicated in many kinds of mammal- and tick-derived cell lines but showed few different characteristics in tropism and antigenicity against anti-viral sera in cell culture. Neither virus caused clinical signs in wild-type mice, but both caused lethal infection in IFNAR-/- mice. ISKV caused more acute death than STBV in IFNAR-/- mice. In both viral infections in IFNAR-/- mice, macroscopic abnormalities were prominent in the liver. Similar levels of viral genome between ISKV- and STBV-infected IFNAR-/- mice were observed in blood, liver, lymphoid tissues and adrenal gland at moribund stages. Hematologic abnormalities in IFNAR-/- mice infected with these viruses, including leukopenia and thrombocytopenia, and biochemical abnormalities indicating liver damage were prominent. In addition, blood levels of many kinds of cytokines and chemokines such as granulocyte colony-stimulating factor, interleukin-6, tumor necrosis factor-α, interferon gamma-induced protein 10 and monocyte chemoattractant protein-1 were elevated. ISKV-immunized serum transfusion after infection delayed the time to death of IFNAR-/- mice. Thus, the present study showed that the species Keterah orthonairovirus could proliferate in most mammal-derived cell lines and cause severe liver lesions and death in IFNAR-/- mice and that serum transfusion might be effective in treatment against Issyk-Kul fever.


Assuntos
Doenças Transmissíveis , Nairovirus , Animais , Doenças Transmissíveis/genética , Doenças Transmissíveis/patologia , Citocinas/metabolismo , Genoma Viral , Fígado , Mamíferos , Camundongos , Nairovirus/genética
6.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534867

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Assuntos
Antígenos Virais/imunologia , Nucleoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia
7.
Sci Rep ; 10(1): 21561, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299049

RESUMO

In a secondary dengue virus (DENV) infection, the presence of non-neutralizing antibodies (Abs), developed during a previous infection with a different DENV serotype, is thought to worsen clinical outcomes by enhancing viral production. This phenomenon is called antibody-dependent enhancement (ADE) of infection, and it has delayed the development of therapeutic Abs and vaccines against DENV, as they must be evaluated for the potential to induce ADE. Unfortunately, limited replication of DENV clinical isolates in vitro and in experimental animals hinders this evaluation process. We have, therefore, constructed a recombinant chimeric flavivirus (DV2ChimV), which carries premembrane (prM) and envelope (E) genes of type 2 DENV (DENV-2) R05-624 clinical (Thai) isolate in a backbone of Japanese encephalitis virus (Nakayama strain). DENV E-protein is the most important viral target, not only for neutralizing Abs, but also for infection-enhancing Abs. In contrast to DENV-2 R05-624, DV2ChimV replicated efficiently in cultured mammalian cells and was lethal in interferon-α/ß-γ-receptor double-knockout mice. With DV2ChimV, we were able to perform neutralization assays, in vitro and in vivo ADE assays, and in vivo protection assays. These results suggest that the chimeric virus is a powerful tool for evaluation of Abs against DENV.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/metabolismo , Dengue/imunologia , Flavivirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Dengue/virologia , Vírus da Dengue/genética , Camundongos , Células Vero , Envelope Viral/imunologia , Proteínas do Envelope Viral/genética
8.
Sci Rep ; 9(1): 11990, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427690

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by the SFTS phlebovirus (SFTSV). SFTS patients were first reported in China, followed by Japan and South Korea. In 2017, cats were diagnosed with SFTS for the first time, suggesting that these animals are susceptible to SFTSV. To confirm whether or not cats were indeed susceptible to SFTSV, animal subjects were experimentally infected with SFTSV. Four of the six cats infected with the SPL010 strain of SFTSV died, all showing similar or more severe symptoms than human SFTS patients, such as a fever, leukocytopenia, thrombocytopenia, weight loss, anorexia, jaundice and depression. High levels of SFTSV RNA loads were detected in the serum, eye swab, saliva, rectal swab and urine, indicating a risk of direct human infection from SFTS-infected animals. Histopathologically, acute necrotizing lymphadenitis and hemophagocytosis were prominent in the lymph nodes and spleen. Severe hemorrhaging was observed throughout the gastrointestinal tract. B cell lineage cells with MUM-1 and CD20, but not Pax-5 in the lesions were predominantly infected with SFTSV. The present study demonstrated that cats were highly susceptible to SFTSV. The risk of direct infection from SFTS-infected cats to humans should therefore be considered.


Assuntos
Doenças do Gato/virologia , Febres Hemorrágicas Virais/veterinária , Phlebovirus/fisiologia , Animais , Biomarcadores , Biópsia , Doenças do Gato/diagnóstico , Doenças do Gato/mortalidade , Doenças do Gato/transmissão , Gatos , Suscetibilidade a Doenças , Avaliação de Sintomas
9.
J Gen Appl Microbiol ; 65(4): 197-203, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30814437

RESUMO

Spirotetronate compounds are polyketide secondary metabolites with diverse biological functions, such as antibacterial, antitumor and antiviral activities. Three pure spirotetronate compounds (2EPS-A, -B, -C) isolated from Actinomadura strain 2EPS showed inhibitory activity against dengue virus serotype 2 (DENV-2). 2EPS-A, -B and -C demonstrated the LC50 values of 11.6, 27.5 and 12.0 µg/ml, respectively, in a test of cytotoxicity to Vero cells. The least cytotoxic, 2EPS-B, was further analyzed for its impact on viral propagation in a cell-based replication assay. At a concentration of 6.25 µg/ml, it could reduce the DENV-2 infection in Vero cells by about 94% when cells infected with DENV-2 were exposed to 2EPS-B, whereas direct treatment of DENV-2 with 2EPS-B at the same concentration prior to subsequent infection to Vero cell yielded no inhibition. 2EPS-A, -B an -C showed strong DENV-2 NS2B-NS3 protease inhibition in an in vitro assay, with IC50 values of 1.94 ± 0.18, 1.47 ± 0.15 and 2.51 ± 0.21 µg/ml, respectively. Therefore, the spirotetronate compounds appear to prevent viral replication and viral assembly by inhibition of the viral protease.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Policetídeos/farmacologia , Actinobacteria/química , Animais , Chlorocebus aethiops , Vírus da Dengue/enzimologia , Vírus da Dengue/fisiologia , Concentração Inibidora 50 , Policetídeos/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Sorogrupo , Células Vero , Replicação Viral/efeitos dos fármacos
10.
J Antibiot (Tokyo) ; 71(7): 662-666, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29567952

RESUMO

We identified a new cyclic lipodepsipeptide, cystargamide B (1), from the mycelial extract of a Kaempferia galanga rhizome-derived actinomycete strain, Streptomyces sp. PB013. The planar structure was elucidated based on high resolution fast-atom bombardment mass spectrometry (HRFABMS) spectroscopy and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations of the constituent amino acids were determined using advanced Marfey's method. Cystargamide B (1) includes rare structural units: a 5-hydroxytryptophan residue and a 2,3-epoxy fatty acid side chain. Notably, cystargamide B (1) inhibited the protease activity of the NS2B/NS3 complex from dengue virus.


Assuntos
Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Streptomyces/química , Vírus da Dengue/enzimologia , Espectroscopia de Ressonância Magnética , Conformação Molecular , Rizoma/microbiologia , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Zingiberaceae/microbiologia
11.
PLoS Pathog ; 13(6): e1006475, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28644867

RESUMO

Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene.


Assuntos
Apolipoproteínas/metabolismo , Hepacivirus/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , Humanos , Proteínas Virais/química , Internalização do Vírus
12.
PLoS One ; 11(2): e0148564, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26844767

RESUMO

Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/ß/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection.


Assuntos
Angiopoietinas/metabolismo , Permeabilidade Capilar , Vírus da Dengue , Dengue/genética , Dengue/metabolismo , Receptor TIE-2/metabolismo , Receptores de Interferon/deficiência , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Doença Aguda , Angiopoietinas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Biomarcadores , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Dengue/mortalidade , Dengue/virologia , Modelos Animais de Doenças , Expressão Gênica , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Camundongos , Camundongos Knockout , Trombocitopenia/etiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Carga Viral
13.
Jpn J Infect Dis ; 69(6): 525-527, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-26743149

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a novel bunyavirus infection caused by the SFTS virus (SFTSV, family Bunyaviridae, genus Phlebovirus) with a high case fatality rate. A previously healthy 72-year-old man showed symptoms of fever, general fatigue, and altered consciousness. He was hospitalized for treatment. On day 3, considering the day on which fever appeared first during the disease course as day 0, he had bloody emesis. An emergency upper gastrointestinal endoscopic examination revealed multiple ulcerative lesions with continuously oozing hemorrhage in the stomach. He died on day 7. He was retrospectively diagnosed as having SFTS, Although it was less likely that the gastric ulcerative lesions were directly induced by SFTSV replication, it was evident that hemorrhagic emesis might occur in the patient in association with the pathophysiology of SFTS. The real-time imaging of gastric ulcerative lesions in a patient with SFTS is reported.


Assuntos
Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/patologia , Endoscopia do Sistema Digestório , Phlebovirus/isolamento & purificação , Idoso , Evolução Fatal , Humanos , Masculino , Úlcera Gástrica/etiologia , Úlcera Gástrica/patologia , Vômito/etiologia , Vômito/patologia
14.
Antiviral Res ; 124: 61-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26522769

RESUMO

Antibody-dependent enhancement (ADE) of dengue virus (DENV) infectivity is thought to play a crucial role in severe dengue disease. It occurs when pre-existing sub-neutralizing anti-DENV antibody (Ab) produced from a primary infection encounters a DENV serotype different from that of the initial infection and forms immune complexes, which enable the efficient infection of Fcγ receptor-bearing cells. However, the exact role played by Abs during a secondary infection of patients remains unknown. We previously obtained a broadly cross-reactive neutralizing IgG1 human monoclonal anti-DENV envelope (E) Ab (HuMAb) D23-1G7C2-IgG1 from a DENV-infected patient; however, D23-1G7C2-IgG1 had ADE activity. With the aim of being able to reduce the ADE activity, we exchanged the Fc region of D23-1G7C2 to generate Abs bearing each of the three other IgG subclasses (IgG2-4). In addition, N297A, a mutation known to reduce the affinity of the IgG1 Fc region for Fcγ receptors, was introduced into D23-1G7C2-IgG1. Swapping D23-1G7C2-IgG1 to IgG2 or IgG4 subclasses reduced ADE activity in FcγRI and FcγRII-bearing THP-1 cells. By contrast, in FcγRII-bearing K562 cells, the change to IgG2 increased ADE activity. Introducing the N297A mutation into D23-1G7C2-IgG1 resulted in a marked reduction in ADE activity in both cell types. Compared to D23-1G7C2-IgG1, D23-1G7C2-IgG1-N297A was less protective in IFN-α/ß/γ receptor knockout mice infected with a lethal dose of recombinant chimeric DENV, carrying prME of DENV-2 in Japanese encephalitis virus (80% vs. 40% survival, respectively). These observations provide valuable information regarding the use of recombinant Abs as therapeutics.


Assuntos
Anticorpos Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/terapia , Dengue/virologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores/efeitos dos fármacos , Reações Cruzadas , Vírus da Dengue/imunologia , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Células K562 , Camundongos , Mutação , Engenharia de Proteínas , Receptores de IgG/genética , Dengue Grave/imunologia , Células Vero , Proteínas do Envelope Viral/imunologia
15.
Virus Genes ; 49(3): 485-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113745

RESUMO

Chikungunya fever (CHIKF) is an acute febrile illness caused by a mosquito-borne alphavirus, chikungunya virus (CHIKV). This disease re-emerged in Kenya in 2004, and spread to the countries in and around the Indian Ocean. The re-emerging epidemics rapidly spread to regions like India and Southeast Asia, and it was subsequently identified in Europe in 2007, probably as a result of importation of chikungunya cases. On the one hand, chikungunya is one of the neglected diseases and has only attracted strong attention during large outbreaks. In 2008-2009, there was a major outbreak of chikungunya fever in Thailand, resulting in the highest number of infections in any country in the region. However, no update of CHIKV circulating in Thailand has been published since 2009. In this study, we examined the viral growth kinetics and sequences of the structural genes derived from CHIKV clinical isolates obtained from the serum specimens of CHIKF-suspected patients in Central Thailand in 2010. We identified the CHIKV harboring two mutations E1-A226V and E2-I211T, indicating that the East, Central, and South African lineage of CHIKV was continuously circulating as an indigenous population in Thailand.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Análise por Conglomerados , Variação Genética , Humanos , Modelos Moleculares , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Conformação Proteica , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Soro/virologia , Tailândia/epidemiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
16.
Jpn J Infect Dis ; 67(2): 132-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24647259

RESUMO

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by mosquito-borne dengue virus (DENV) infection leading to death in tropical and subtropical countries. In Thailand, all 4 serotypes of DENV are circulating. The most severe cases of DF and DHF are primarily introduced by secondary infections. Epidemiological studies have demonstrated that approximately 20% of the primary infection cases were caused by DENV-1 and -3, while the cases of DENV-2 or -4 accounted for less than 3%. For this reason, DENV-2 and -4 from primary infections have not been well studied. In this study, the sequence diversity of the envelope gene of 8 DENV-2 clinical isolates from primary/secondary infections was analyzed. DENV-2 from primary infections were highly heterogeneous in individual patients, whereas those from secondary infections were homogeneous. Phylogenetic analysis demonstrated that the heterogeneous population of DENV-2 from primary infections was composed of closely related quasispecies. Homogenous DENV-2 could be derived from selection of a particular viral population in secondary infections. The degree of sequence diversity of DENV-2 varied, and thus quasispecies may be involved in the progression of DENV infection.


Assuntos
Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Dengue/virologia , Variação Genética , Análise por Conglomerados , Vírus da Dengue/genética , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Tailândia , Proteínas do Envelope Viral/genética
17.
Biochem Biophys Res Commun ; 440(3): 393-8, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24070610

RESUMO

The non-structural protein NS2B/NS3 serine-protease complex of the dengue virus (DENV) is required for the maturation of the viral polyprotein. Dissociation of the NS2B cofactor from NS3 diminishes the enzymatic activity of the complex. In this study, we identified a small molecule inhibitor that interferes with the interaction between NS2B and NS3 using structure-based screening and a cell-based viral replication assay. A library containing 661,417 small compounds derived from the Molecular Operating Environment lead-like database was docked to the NS2B/NS3 structural model. Thirty-nine compounds with high scores were tested in a secondary screening using a cell-based viral replication assay. SK-12 was found to inhibit replication of all DENV serotypes (EC50=0.74-4.92 µM). In silico studies predicted that SK-12 pre-occupies the NS2B-binding site of NS3. Steady-state kinetics using a fluorogenic short peptide substrate demonstrated that SK-12 is a noncompetitive inhibitor against the NS2B/NS3 protease. Inhibition to Japanese encephalitis virus by SK-12 was relatively weak (EC50=29.81 µM), and this lower sensitivity was due to difference in amino acid at position 27 of NS3. SK-12 is the promising small-molecule inhibitor that targets the interaction between NS2B and NS3.


Assuntos
Antivirais/farmacologia , Dengue/tratamento farmacológico , Naftóis/farmacologia , Serina Proteases/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos , Simulação por Computador , Dengue/enzimologia , Humanos , Modelos Químicos , Conformação Proteica
18.
Viral Immunol ; 26(4): 250-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23941673

RESUMO

Dengue virus (DENV) infection induces a strong B-cell immune response against the viral nonstructural protein 1 (NS1). Anti-NS1 antibodies (Abs) may affect virus production because they coexist with the virus in the patients' blood. The present study examined whether ten mouse monoclonal antibodies (MAbs) raised against NS1 affected production of the DENV-2. Three MAbs, 4C2, 4G11, and 4E5, showed weak neutralizing activity in a focus reduction assay. In addition, two serotype-specific MAbs, 4C2 and 4G11, protected suckling mice from lethal infection with DENV-2. An immunoprecipitation assay with DENV-2 showed that these MAbs, which were specific for the NS1 of DENV-4 and DENV-1, cross-reacted with the DENV-2 pre-membrane (prM) protein, but not with DENV-2 NS1. Interestingly, high concentrations of MAb 4G11 showed antibody-dependent enhancement of DENV-2 infection in human monocyte THP-1 cells. Taken together, these observations suggest that serotype-specific anti-NS1 MAbs are potentially involved in virus production.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Aedes , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/sangue , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Reações Cruzadas/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células Vero , Replicação Viral/imunologia
19.
Antiviral Res ; 98(3): 423-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545366

RESUMO

Public health concern about dengue diseases, caused by mosquito-borne infections with four serotypes of dengue virus (DENV-1-DENV-4), is escalating in tropical and subtropical countries. Most of the severe dengue cases occur in patients experiencing a secondary infection with a serotype that is different from the first infection. This is believed to be due to antibody-dependent enhancement (ADE), by which one DENV serotype uses pre-existing anti-DENV antibodies elicited in the primary infection to facilitate entry of a different DENV serotype into the Fc receptor-positive macrophages. Recently, we prepared a number of hybridomas producing human monoclonal antibodies (HuMAbs) by using peripheral blood lymphocytes from Thai patients at acute phase of secondary infection with DENV-2. Here, we characterized 17 HuMAbs prepared from two patients with dengue fever (DF) and one patient with dengue hemorrhagic fever (DHF) that were selected as antibodies recognizing viral envelope protein and showing higher neutralization activity to all serotypes. In vivo evaluation using suckling mice revealed near perfect activity to prevent mouse lethality following intracerebral DENV-2 inoculation. In a THP-1 cell assay, these HuMAbs showed ADE activities against DENV-2 at similar levels between HuMAbs derived from DF and DHF patients. However, the F(ab')2 fragment of the HuMAb showed a similar virus neutralization activity as original, with no ADE activity. Thus, these HuMAbs could be one of the therapeutic candidates against DENV infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Facilitadores , Vírus da Dengue/imunologia , Dengue/terapia , Adulto , Animais , Anticorpos Monoclonais/uso terapêutico , Antivirais/imunologia , Antivirais/uso terapêutico , Coinfecção/imunologia , Coinfecção/virologia , Dengue/imunologia , Vírus da Dengue/patogenicidade , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Hibridomas/imunologia , Hibridomas/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Índice de Gravidade de Doença , Proteínas do Envelope Viral/imunologia , Internalização do Vírus , Adulto Jovem
20.
Virol J ; 9: 114, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22698190

RESUMO

BACKGROUND: Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-ß in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/ß production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7-10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. RESULTS: The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-ß and increased the expression of anti-viral genes, including IFN-α, IFN-ß, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. CONCLUSIONS: CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.


Assuntos
Vírus Chikungunya/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Poli I-C/imunologia , Receptor 3 Toll-Like/agonistas , Replicação Viral/efeitos dos fármacos , Vírus Chikungunya/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Proteínas de Ligação ao GTP , Perfilação da Expressão Gênica , Humanos , Interferon-alfa/genética , Interferon beta/genética , Interferon beta/metabolismo , Proteínas de Resistência a Myxovirus , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA