Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067212

RESUMO

Multiple myeloma (MM) is a malignant plasma cell disorder in which the MYC oncogene is frequently dysregulated. Due to its central role, MYC has been proposed as a drug target; however, the development of a clinically applicable molecule modulating MYC activity remains an unmet challenge. Consequently, an alternative is the development of therapeutic options targeting proteins located downstream of MYC. Therefore, we aimed to identify undescribed MYC-target proteins in MM cells using Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) and mass spectrometry. We revealed a cluster of proteins associated with the regulation of translation initiation. Herein, the RNA-binding proteins Heterogeneous Nuclear Ribonucleoprotein C (hnRNPC) and La Ribonucleoprotein 1 (LARP1) were predominantly downregulated upon MYC depletion. CRISPR-mediated knockout of either hnRNPC or LARP1 in conjunction with redundant LARP family proteins resulted in a proliferative disadvantage for MM cells. Moreover, high expression levels of these proteins correlate with high MYC expression and with poor survival and disease progression in MM patients. In conclusion, our study provides valuable insights into MYC's role in translation initiation by identifying hnRNPC and LARP1 as proliferation drivers of MM cells and as both predictive factors for survival and disease progression in MM patients.

2.
Leukemia ; 37(12): 2367-2382, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37935978

RESUMO

High metabolic flexibility is pivotal for the persistence and therapy resistance of acute myeloid leukemia (AML). In 20-30% of AML patients, activating mutations of FLT3, specifically FLT3-ITD, are key therapeutic targets. Here, we investigated the influence of FLT3-ITD on AML metabolism. Nuclear Magnetic Resonance (NMR) profiling showed enhanced reshuffling of pyruvate towards the tricarboxylic acid (TCA) cycle, suggesting an increased activity of the pyruvate dehydrogenase complex (PDC). Consistently, FLT3-ITD-positive cells expressed high levels of PDP1, an activator of the PDC. Combining endogenous tagging of PDP1 with genome-wide CRISPR screens revealed that FLT3-ITD induces PDP1 expression through the RAS signaling axis. PDP1 knockdown resulted in reduced cellular respiration thereby impairing the proliferation of only FLT3-ITD cells. These cells continued to depend on PDP1, even in hypoxic conditions, and unlike FLT3-ITD-negative cells, they exhibited a rapid, PDP1-dependent revival of their respiratory capacity during reoxygenation. Moreover, we show that PDP1 modifies the response to FLT3 inhibition. Upon incubation with the FLT3 tyrosine kinase inhibitor quizartinib (AC220), PDP1 persisted or was upregulated, resulting in a further shift of glucose/pyruvate metabolism towards the TCA cycle. Overexpression of PDP1 enhanced, while PDP1 depletion diminished AC220 resistance in cell lines and peripheral blasts from an AC220-resistant AML patient in vivo. In conclusion, FLT3-ITD assures the expression of PDP1, a pivotal metabolic regulator that enhances oxidative glucose metabolism and drug resistance. Hence, PDP1 emerges as a potentially targetable vulnerability in the management of AML.


Assuntos
Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Piruvatos/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
3.
Cancer Cell ; 40(3): 301-317.e12, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35245447

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.


Assuntos
Leucemia Mieloide Aguda , Proteogenômica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteômica
4.
Cells ; 11(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053409

RESUMO

Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1-6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.


Assuntos
Cisteína Endopeptidases/genética , Terapia de Alvo Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Hipóxia Tumoral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
5.
Comput Struct Biotechnol J ; 19: 4059-4066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377370

RESUMO

The development of resistance to chemotherapeutic agents, such as Doxorubicin (DOX) and cytarabine (AraC), is one of the greatest challenges to the successful treatment of Acute Myeloid Leukemia (AML). Such acquisition is often underlined by a metabolic reprogramming that can provide a therapeutic opportunity, as it can lead to the emergence of vulnerabilities and dependencies to be exploited as targets against the resistant cells. In this regard, genome-scale metabolic models (GSMMs) have emerged as powerful tools to integrate multiple layers of data to build cancer-specific models and identify putative metabolic vulnerabilities. Here, we use genome-scale metabolic modelling to reconstruct a GSMM of the THP1 AML cell line and two derivative cell lines, one with acquired resistance to AraC and the second with acquired resistance to DOX. We also explore how, adding to the transcriptomic layer, the metabolomic layer enhances the selectivity of the resulting condition specific reconstructions. The resulting models enabled us to identify and experimentally validate that drug-resistant THP1 cells are sensitive to the FDA-approved antifolate methotrexate. Moreover, we discovered and validated that the resistant cell lines could be selectively targeted by inhibiting squalene synthase, providing a new and promising strategy to directly inhibit cholesterol synthesis in AML drug resistant cells.

6.
Cancers (Basel) ; 12(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228196

RESUMO

Tyrosine kinase inhibitors (TKIs) are currently the standard chemotherapeutic agents for the treatment of chronic myeloid leukemia (CML). However, due to TKI resistance acquisition in CML patients, identification of new vulnerabilities is urgently required for a sustained response to therapy. In this study, we have investigated metabolic reprogramming induced by TKIs independent of BCR-ABL1 alterations. Proteomics and metabolomics profiling of imatinib-resistant CML cells (ImaR) was performed. KU812 ImaR cells enhanced pentose phosphate pathway, glycogen synthesis, serine-glycine-one-carbon metabolism, proline synthesis and mitochondrial respiration compared with their respective syngeneic parental counterparts. Moreover, the fact that only 36% of the main carbon sources were utilized for mitochondrial respiration pointed to glycerol-phosphate shuttle as mainly contributors to mitochondrial respiration. In conclusion, CML cells that acquire TKIs resistance present a severe metabolic reprogramming associated with an increase in metabolic plasticity needed to overcome TKI-induced cell death. Moreover, this study unveils that KU812 Parental and ImaR cells viability can be targeted with metabolic inhibitors paving the way to propose novel and promising therapeutic opportunities to overcome TKI resistance in CML.

7.
Front Immunol ; 11: 627662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679722

RESUMO

Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.


Assuntos
Sobrecarga de Ferro , Ferro , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Ferro/sangue , Ferro/imunologia , Sobrecarga de Ferro/sangue , Sobrecarga de Ferro/imunologia , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/terapia
8.
Angew Chem Int Ed Engl ; 59(6): 2304-2308, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730253

RESUMO

Current metabolomics approaches utilize cellular metabolite extracts, are destructive, and require high cell numbers. We introduce here an approach that enables the monitoring of cellular metabolism at lower cell numbers by observing the consumption/production of different metabolites over several kinetic data points of up to 48 hours. Our approach does not influence cellular viability, as we optimized the cellular matrix in comparison to other materials used in a variety of in-cell NMR spectroscopy experiments. We are able to monitor real-time metabolism of primary patient cells, which are extremely sensitive to external stress. Measurements are set up in an interleaved manner with short acquisition times (approximately 7 minutes per sample), which allows the monitoring of up to 15 patient samples simultaneously. Further, we implemented our approach for performing tracer-based assays. Our approach will be important not only in the metabolomics fields, but also in individualized diagnostics.


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Metaboloma/efeitos dos fármacos , Estaurosporina/análogos & derivados , Estaurosporina/química , Estaurosporina/metabolismo , Estaurosporina/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
Cells ; 8(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370337

RESUMO

Acute myeloid leukemia (AML) is one of the most common and life-threatening leukemias. A highly diverse and flexible metabolism contributes to the aggressiveness of the disease that is still difficult to treat. By using different sources of nutrients for energy and biomass supply, AML cells gain metabolic plasticity and rapidly outcompete normal hematopoietic cells. This review aims to decipher the diverse metabolic strategies and the underlying oncogenic and environmental changes that sustain continuous growth, mediate redox homeostasis and induce drug resistance in AML. We revisit Warburg's hypothesis and illustrate the role of glucose as a provider of cellular building blocks rather than as a supplier of the tricarboxylic acid (TCA) cycle for energy production. We discuss how the diversity of fuels for the TCA cycle, including glutamine and fatty acids, contributes to the metabolic plasticity of the disease and highlight the roles of amino acids and lipids in AML metabolism. Furthermore, we point out the potential of the different metabolic effectors to be used as novel therapeutic targets.


Assuntos
Metabolismo dos Carboidratos , Metabolismo Energético , Leucemia Mieloide Aguda/metabolismo , Ciclo do Ácido Cítrico , Glicólise , Humanos , Microambiente Tumoral
11.
Leukemia ; 33(6): 1411-1426, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30679800

RESUMO

LSD1 has emerged as a promising epigenetic target in the treatment of acute myeloid leukemia (AML). We used two murine AML models based on retroviral overexpression of Hoxa9/Meis1 (H9M) or MN1 to study LSD1 loss of function in AML. The conditional knockout of Lsd1 resulted in differentiation with both granulocytic and monocytic features and increased ATRA sensitivity and extended the survival of mice with H9M-driven AML. The conditional knockout led to an increased expression of multiple genes regulated by the important myeloid transcription factors GFI1 and PU.1. These include the transcription factors GFI1B and IRF8. We also compared the effect of different irreversible and reversible inhibitors of LSD1 in AML and could show that only tranylcypromine derivatives were capable of inducing a differentiation response. We employed a conditional knock-in model of inactive, mutant LSD1 to study the effect of only interfering with LSD1 enzymatic activity. While this was sufficient to initiate differentiation, it did not result in a survival benefit in mice. Hence, we believe that targeting both enzymatic and scaffolding functions of LSD1 is required to efficiently treat AML. This finding as well as the identified biomarkers may be relevant for the treatment of AML patients with LSD1 inhibitors.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/antagonistas & inibidores , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Tranilcipromina/farmacologia , Animais , Antidepressivos/farmacologia , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/fisiologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas
12.
Front Immunol ; 9: 2858, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568658

RESUMO

Macrophages exposed to the Th2 cytokines interleukin (IL) IL-4 and IL-13 exhibit a distinct transcriptional response, commonly referred to as M2 polarization. Recently, IL-4-induced polarization of murine bone marrow-derived macrophages (BMDMs) has been linked to acetyl-CoA levels through the activity of the cytosolic acetyl-CoA-generating enzyme ATP-citrate lyase (ACLY). Here, we studied how ACLY regulated IL-4-stimulated gene expression in human monocyte-derived macrophages (MDMs). Although multiple ACLY inhibitors attenuated IL-4-induced target gene expression, this effect could not be recapitulated by silencing ACLY expression. Furthermore, ACLY inhibition failed to alter cellular acetyl-CoA levels and histone acetylation. We generated ACLY knockout human THP-1 macrophages using CRISPR/Cas9 technology. While these cells exhibited reduced histone acetylation levels, IL-4-induced gene expression remained intact. Strikingly, ACLY inhibitors still suppressed induction of target genes by IL-4 in ACLY knockout cells, suggesting off-target effects of these drugs. Our findings suggest that ACLY may not be the major regulator of nucleocytoplasmic acetyl-CoA and IL-4-induced polarization in human macrophages. Furthermore, caution should be warranted in interpreting the impact of pharmacological inhibition of ACLY on gene expression.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Interleucina-4/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/imunologia , Acetilcoenzima A/metabolismo , Acetilação/efeitos dos fármacos , Buffy Coat/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Interleucina-4/imunologia , Macrófagos/enzimologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Células THP-1
13.
Cells ; 7(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642469

RESUMO

Cell-matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell-matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.

14.
Mol Ther Nucleic Acids ; 10: 1-8, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499925

RESUMO

The CRISPR/Cas9 prokaryotic adaptive immune system and its swift repurposing for genome editing enables modification of any prespecified genomic sequence with unprecedented accuracy and efficiency, including targeted gene repair. We used the CRISPR/Cas9 system for targeted repair of patient-specific point mutations in the Cytochrome b-245 heavy chain gene (CYBB), whose inactivation causes chronic granulomatous disease (XCGD)-a life-threatening immunodeficiency disorder characterized by the inability of neutrophils and macrophages to produce microbicidal reactive oxygen species (ROS). We show that frameshift mutations can be effectively repaired in hematopoietic cells by non-integrating lentiviral vectors carrying RNA-guided Cas9 endonucleases (RGNs). Because about 25% of most inherited blood disorders are caused by frameshift mutations, our results suggest that up to a quarter of all patients suffering from monogenic blood disorders could benefit from gene therapy employing personalized, donor template-free RGNs.

15.
Matrix Biol ; 59: 109-120, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27645114

RESUMO

Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGFß signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S-/-) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfrß-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S-/- mice is primarily caused by defective Pdgfrß signaling. Here we show that LTBP4 induces Pdgfrß signaling by inhibiting the antioxidant Nrf2/Keap1 pathway in a TGFß-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair.


Assuntos
Matriz Extracelular/metabolismo , Proteínas de Ligação a TGF-beta Latente/genética , Fator 2 Relacionado a NF-E2/genética , Enfisema Pulmonar/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Transformador beta/genética , Animais , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas de Ligação a TGF-beta Latente/deficiência , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Vison , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peroxidases , Plasmídeos/química , Plasmídeos/metabolismo , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Tropoelastina/deficiência , Tropoelastina/genética
16.
Free Radic Biol Med ; 102: 57-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863990

RESUMO

Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox. IN CONCLUSION: the cytochrome P450 system accounts for the majority of the signal of Nox activity chemiluminescence based assays.


Assuntos
Acridinas/metabolismo , Angiotensina II/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Grupo dos Citocromos b/genética , NADPH Oxidases/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Acridinas/química , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Células HEK293 , Humanos , Luminescência , Membranas/química , Membranas/metabolismo , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , NADP/metabolismo , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
Sci Rep ; 6: 28820, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346727

RESUMO

Desmosomes are adhesion plaques that mediate cell-cell adhesion in many tissues, including the epidermis, and generate mechanical resistance to tissues. The extracellular domains of desmosomal cadherin proteins, desmogleins and desmocollins, are required for the interaction with cadherins of the neighbouring cells, whereas their cytoplasmic tails associate with cytoplasmic proteins which mediate connection to intermediate filaments. Disruption of desmosomal adhesion by mutations, autoantibodies or bacterial toxins results in severe human disorders of e.g. the skin and the heart. Despite the vital role of desmosomes in various tissues, the details of their molecular assembly are not clear. We here show that the two members of the flotillin protein family directly interact with the cytoplasmic tails of desmogleins. Depletion of flotillins in human keratinocytes results in weakened desmosomal adhesion and reduced expression of desmoglein-3, most likely due to a reduction in the desmosomal pool due to increased turnover. In the absence of flotillins, desmoglein-3 shows an altered localisation pattern in the cell-cell junctions of keratinocytes, which is highly similar to the localisation observed upon treatment with pemphigus vulgaris autoantibodies. Thus, our data show that flotillins, which have previously been connected to the classical cadherins, are also of importance for the desmosomal cell adhesion.


Assuntos
Desmogleína 3/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pênfigo/metabolismo , Animais , Autoanticorpos/imunologia , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Epiderme/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microscopia Confocal , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Ratos
18.
Cells ; 3(1): 129-49, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24709906

RESUMO

Flotillins are highly conserved proteins that localize into specific cholesterol rich microdomains in cellular membranes. They have been shown to be associated with, for example, various signaling pathways, cell adhesion, membrane trafficking and axonal growth. Recent findings have revealed that flotillins are frequently overexpressed in various types of human cancers. We here review the suggested functions of flotillins during receptor tyrosine kinase signaling and in cancer. Although flotillins have been implicated as putative cancer therapy targets, we here show that great caution is required since flotillin ablation may result in effects that increase instead of decrease the activity of specific signaling pathways. On the other hand, as flotillin overexpression appears to be related with metastasis formation in certain cancers, we also discuss the implications of these findings for future therapy aspects.

19.
BMC Cancer ; 13: 575, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304721

RESUMO

BACKGROUND: Flotillin-1 and flotillin-2 are two homologous and ubiquitously expressed proteins that are involved in signal transduction and membrane trafficking. Recent studies have reported that flotillins promote breast cancer progression, thus making them interesting targets for breast cancer treatment. In the present study, we have investigated the underlying molecular mechanisms of flotillins in breast cancer. METHODS: Human adenocarcinoma MCF7 breast cancer cells were stably depleted of flotillins by means of lentivirus mediated short hairpin RNAs. Western blotting, immunofluorescence and quantitative real-time PCR were used to analyze the expression of proteins of the epidermal growth factor receptor (EGFR) family. Western blotting was used to investigate the effect of EGFR stimulation or inhibition as well as phosphatidylinositol 3-kinase (PI3K) inhibition on mitogen activated protein kinase (MAPK) signaling. Rescue experiments were performed by stable transfection of RNA intereference resistant flotillin proteins. RESULTS: We here show that stable knockdown of flotillin-1 in MCF7 cells resulted in upregulation of EGFR mRNA and protein expression and hyperactivation of MAPK signaling, whereas ErbB2 and ErbB3 expression were not affected. Treatment of the flotillin knockdown cells with an EGFR inhibitor reduced the MAPK signaling, demonstrating that the increased EGFR expression and activity is the cause of the increased signaling. Stable ectopic expression of flotillins in the knockdown cells reduced the increased EGFR expression, demonstrating a direct causal relationship between flotillin-1 expression and EGFR amount. Furthermore, the upregulation of EGFR was dependent on the PI3K signaling pathway which is constitutively active in MCF7 cells, and PI3K inhibition resulted in reduced EGFR expression. CONCLUSIONS: This study demonstrates that flotillins may not be suitable as cancer therapy targets in cells that carry certain other oncogenic mutations such as PI3K activating mutations, as unexpected effects are prone to emerge upon flotillin knockdown which may even facilitate cancer cell growth and proliferation.


Assuntos
Receptores ErbB/metabolismo , Proteínas de Membrana/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama , Proliferação de Células , Cromonas/farmacologia , Endocitose , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Regulação para Cima
20.
PLoS One ; 8(12): e84393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391950

RESUMO

Flotillin-1 and flotillin-2 are two homologous, membrane raft associated proteins. Although it has been reported that flotillins are involved in cell adhesion processes and play a role during breast cancer progression, thus making them interesting future therapeutic targets, their precise function has not been well elucidated. The present study investigates the function of these proteins in cell-cell adhesion in non-malignant cells. We have used the non-malignant epithelial MCF10A cells to study the interaction network of flotillins within cell-cell adhesion complexes. RNA interference was used to examine the effect of flotillins on the structure of adherens junctions and on the association of core proteins, such as E-cadherin, with membrane rafts. We here show that the cadherin proteins of the adherens junction associate with flotillin-2 in MCF10A cells and in various human cell lines. In vitro, flotillin-1 and flotillin-2 directly interact with γ-catenin which is so far the only protein known to be present both in the adherens junction and the desmosome. Mapping of the interaction domain within the γ-catenin sequence identified the Armadillo domains 6-8, especially ARM domain 7, to be important for the association with flotillins. Furthermore, depletion of flotillins significantly influenced the morphology of the adherens junction in human epithelial MCF10A cells and altered the association of E-cadherin and γ-catenin with membrane rafts. Taken together, these observations suggest a functional role for flotillins, especially flotillin-2, in cell-cell adhesion in non-malignant epithelial cells.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/fisiologia , Proteínas de Membrana/metabolismo , gama Catenina/metabolismo , Junções Aderentes/metabolismo , Análise de Variância , Western Blotting , Caderinas/metabolismo , Linhagem Celular , Primers do DNA/genética , Imunofluorescência , Humanos , Imunoprecipitação , Plasmídeos/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA