Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1216199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464730

RESUMO

Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-ß serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.

2.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959454

RESUMO

Acute lymphoblastic leukemia (ALL) is the most frequently diagnosed type of leukemia among children. Although chemotherapy is a common treatment for cancer, it has a wide range of serious side effects, including myelo- and immunosuppression, hepatotoxicity and neurotoxicity. Combination therapies using natural substances are widely recommended to attenuate the adverse effects of chemotherapy. The aim of the present study was to investigate the anti-leukemic potential of extract from the lichen Pseudevernia furfuracea (L.) Zopf (PSE) and isolated physodic acid (Phy) in an in vitro ALL model. A screening assay, flow cytometry and Western blotting were used to analyze apoptosis occurrence, oxidative stress, DNA damage and stress/survival/apoptotic pathway modulation induced by the tested substances in Jurkat cells. We demonstrate for the first time that PSE and Phy treatment-induced intrinsic caspase-dependent cell death was associated with increased oxidative stress, DNA damage and cell cycle arrest with the activation of cell cycle checkpoint proteins p53, p21 and p27 and stress/survival kinases p38 MAPK, JNK and PI3K/Akt. Moreover, using peripheral T lymphocytes, we confirmed that PSE and Phy treatment caused minimal cytotoxicity in normal cells, and therefore, these naturally occurring lichen secondary metabolites could be promising substances for ALL therapy.

3.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802621

RESUMO

Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-ß1 (TGF-ß) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Chalconas/química , Feminino , Células HeLa , Humanos , Fosforilação , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
4.
Biomolecules ; 11(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809098

RESUMO

Lichens comprise a number of unique secondary metabolites with remarkable biological activities and have become an interesting research topic for cancer therapy. However, only a few of these metabolites have been assessed for their effectiveness against various in vitro models. Therefore, the aim of the present study was to assess the effect of extract Pseudevernia furfuracea (L.) Zopf (PSE) and its metabolite physodic acid (Phy) on tumour microenvironment (TME) modulation, focusing on epithelial-mesenchymal transition (EMT), cancer-associated fibroblasts (CAFs) transformation and angiogenesis. Here, we demonstrate, by using flow cytometry, Western blot and immunofluorescence microscopy, that tested compounds inhibited the EMT process in MCF-10A breast cells through decreasing the level of different mesenchymal markers in a time- and dose-dependent manner. By the same mechanisms, PSE and Phy suppressed the function of Transforming growth factor beta (TGF-ß)-stimulated fibroblasts. Moreover, PSE and Phy resulted in a decreasing level of the TGF-ß canonical pathway Smad2/3, which is essential for tumour growth. Furthermore, PSE and Phy inhibited angiogenesis ex ovo in a quail embryo chorioallantoic model, which indicates their potential anti-angiogenic activity. These results also provided the first evidence of the modulation of TME by these substances.


Assuntos
Dibenzoxepinas/farmacologia , Metaboloma , Parmeliaceae/química , Extratos Vegetais/farmacologia , Microambiente Tumoral , Animais , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Caderinas/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Cromatografia Líquida de Alta Pressão , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Neovascularização Fisiológica/efeitos dos fármacos , Codorniz/embriologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/efeitos dos fármacos
5.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375383

RESUMO

Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhus/química , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biomolecules ; 10(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947708

RESUMO

In recent decades, several spices have been studied for their potential in the prevention and treatment of cancer. It is documented that spices have antioxidant, anti-inflammatory, immunomodulatory, and anticancer effects. The main mechanisms of spices action included apoptosis induction, proliferation, migration and invasion of tumour inhibition, and sensitization of tumours to radiotherapy and chemotherapy. In this study, the ability of clove buds extract (CBE) to induce oxidative stress, DNA damage, and stress/survival/apoptotic pathways modulation were analysed in MCF-7 cells. We demonstrated that CBE treatment induced intrinsic caspase-dependent cell death associated with increased oxidative stress mediated by oxygen and nitrogen radicals. We showed also the CBE-mediated release of mitochondrial pro-apoptotic factors, signalling of oxidative stress-mediated DNA damage with modulation of cell antioxidant SOD (superoxide dismutase) system, and modulation activity of the Akt, p38 MAPK, JNK and Erk 1/2 pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Syzygium/química , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química
7.
Molecules ; 23(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973576

RESUMO

Selective estrogen receptor modulators (SERMs) have been developed to achieve beneficial effects of estrogens while minimizing their side effects. In this context, we decided to evaluate the protective effect of genistein, a natural SERM, on skin flap viability in rats and in a series of in vitro experiments on endothelial cells (migration, proliferation, antioxidant properties, and gene expression profiling following genistein treatment). Our results showed that administration of genistein increased skin flap viability, but importantly, the difference is only significant when treatment is started 3 days prior the flap surgery. Based on our in vitro experiments, it may be hypothesized that the underlying mechanism may rather by mediated by increasing SOD activity and Bcl-2 expression. The gene expression profiling further revealed 9 up-regulated genes (angiogenesis/inflammation promoting: CTGF, CXCL5, IL-6, ITGB3, MMP-14, and VEGF-A; angiogenesis inhibiting: COL18A1, TIMP-2, and TIMP-3). In conclusion, we observed a protective effect of genistein on skin flap viability which could be potentially applied in plastic surgery to women undergoing a reconstructive and/or plastic intervention. Nevertheless, further research is needed to explain the exact underlying mechanism and to find the optimal treatment protocol.


Assuntos
Células Endoteliais/citologia , Genisteína/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Retalhos Cirúrgicos/fisiologia , Animais , Sobrevivência Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Animais , Ratos , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA