Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genomics Proteomics Bioinformatics ; 19(2): 243-252, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713850

RESUMO

Single-cell mass cytometry (SCMC) combines features of traditional flow cytometry (i.e., fluorescence-activated cell sorting) with mass spectrometry, making it possible to measure several parameters at the single-cell level for a complex analysis of biological regulatory mechanisms. In this study, weoptimizedSCMC to analyze hemocytes of the Drosophila innate immune system. We used metal-conjugated antibodies (against cell surface antigens H2, H3, H18, L1, L4, and P1, and intracellular antigens 3A5 and L2) and anti-IgM (against cell surface antigen L6) to detect the levels of antigens, while anti-GFP was used to detect crystal cells in the immune-induced samples. We investigated the antigen expression profile of single cells and hemocyte populations in naive states, in immune-induced states, in tumorous mutants bearing a driver mutation in the Drosophila homologue of Janus kinase (hopTum) and carrying a deficiency of the tumor suppressor gene lethal(3)malignant blood neoplasm-1  [l(3)mbn1], as well as in stem cell maintenance-defective hdcΔ84 mutant larvae. Multidimensional analysis enabled the discrimination of the functionally different major hemocyte subsets for lamellocytes, plasmatocytes, and crystal cells, anddelineated the unique immunophenotype of Drosophila mutants. We have identified subpopulations of L2+/P1+ and L2+/L4+/P1+ transitional phenotype cells in the tumorous strains l(3)mbn1 and hopTum, respectively, and a subpopulation of L4+/P1+ cells upon immune induction. Our results demonstrated for the first time that SCMC, combined with multidimensional bioinformatic analysis, represents a versatile and powerful tool to deeply analyze the regulation of cell-mediated immunity of Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Hemócitos/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Larva/metabolismo
2.
Dev Comp Immunol ; 109: 103701, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32320738

RESUMO

Cell mediated immunity of the honey bee (Apis mellifera) involves the activity of several hemocyte populations, currently defined by morphological features and lectin binding characteristics. The objective of the present study was to identify molecular markers capable of characterizing subsets of honey bee hemocytes. We developed and employed monoclonal antibodies with restricted reactions to functionally distinct hemocyte subpopulations. Melanizing cells, known as oenocytoids, were defined by an antibody to prophenoloxidase, aggregating cells were identified by the expression of Hemolectin, and phagocytic cells were identified by a marker expressed on granulocytes. We anticipate that this combination of antibodies not only allows for the detection of functionally distinct hemocyte subtypes, but will help to further the exploration of hematopoietic compartments, as well as reveal details of the honey bee cellular immune defense against parasites and microbes.


Assuntos
Anticorpos Monoclonais/imunologia , Abelhas/imunologia , Hemócitos/imunologia , Hemolinfa/imunologia , Animais , Anticorpos Monoclonais/análise , Abelhas/citologia , Abelhas/microbiologia , Biomarcadores/análise , Escherichia coli/imunologia , Hemócitos/citologia , Hemócitos/microbiologia , Hemolinfa/citologia , Hemolinfa/microbiologia , Larva/citologia , Larva/imunologia , Larva/microbiologia , Microscopia de Fluorescência , Fagocitose/imunologia
3.
J Innate Immun ; 12(3): 257-272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31553970

RESUMO

Previously, a novel cell type, the multinucleated giant hemocyte (MGH) was identified in the ananassae subgroup of Drosophilidae. These cells share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation. We were able to show that MGHs also differentiate in Zaprionus indianus, an invasive species belonging to the vittiger subgroup of the family, highly resistant to a large number of parasitoid wasp species. We have classified the MGHs of Z. indianusas giant hemocytes belonging to a class of cells which also include elongated blood cells carrying a single nucleus and anuclear structures. They are involved in encapsulating parasites, originate from the lymph gland, can develop by cell fusion, and generally carry many nuclei, while possessing an elaborated system of canals and sinuses, resulting in a spongiform appearance. Their nuclei are all transcriptionally active and show accretion of genetic material. Multinucleation and accumulation of the genetic material in the giant hemocytes represents a two-stage amplification of the genome, while their spongy ultrastructure substantially increases the contact surface with the extracellular space. These features may furnish the giant hemocytes with a considerable metabolic advantage, hence contributing to the mechanism of the effective immune response.


Assuntos
Drosophilidae/imunologia , Genoma de Inseto , Células Gigantes/imunologia , Hemócitos/imunologia , Imunidade Celular , Animais , Drosophilidae/genética
4.
Genes (Basel) ; 10(3)2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841641

RESUMO

Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Hemolinfa/citologia , Transdução de Sinais , Animais , Diferenciação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemolinfa/metabolismo , Modelos Animais
5.
J Innate Immun ; 7(4): 340-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659341

RESUMO

We identified and characterized a so far unrecognized cell type, dubbed the multinucleated giant hemocyte (MGH), in the ananassae subgroup of Drosophilidae. Here, we describe the functional and ultrastructural characteristics of this novel blood cell type as well as its characterization with a set of discriminative immunological markers. MGHs are encapsulating cells that isolate and kill the parasite without melanization. They share some properties with but differ considerably from lamellocytes, the encapsulating cells of Drosophila melanogaster, the broadly used model organism in studies of innate immunity. MGHs are nonproliferative effector cells that are derived from phagocytic cells of the sessile tissue and the circulation, but do not exhibit phagocytic activity. In contrast to lamellocytes, MGHs are gigantic cells with filamentous projections and contain many nuclei, which are the result of the fusion of several cells. Although the structure of lamellocytes and MGHs differ remarkably, their function in the elimination of parasites is similar, which is potentially the result of the convergent evolution of interactions between hosts and parasites in different geographic regions. MGHs are highly motile and share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation.


Assuntos
Movimento Celular/imunologia , Células Gigantes/imunologia , Imunidade Celular , Fagocitose , Animais , Drosophila , Células Gigantes/citologia , Hemócitos
6.
PLoS One ; 9(6): e98191, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892745

RESUMO

In recent years, Drosophila melanogaster has become an attractive model organism in which to study the structure and development of the cellular immune components. The emergence of immunological markers greatly accelerated the identification of the immune cells (hemocytes), while the creation of genetic reporter constructs allowed unique insight into the structural organization of hematopoietic tissues. However, investigation of the hemocyte compartments by the means of immunological markers requires dissection and fixation, which regularly disrupt the delicate structure and hamper the microanatomical characterization. Moreover, the investigation of transgenic reporters alone can be misleading as their expression often differs from the native expression pattern of their respective genes. We describe here a method that combines the reporter constructs and the immunological tools in live imaging, thereby allowing use of the array of available immunological markers while retaining the structural integrity of the hematopoietic compartments. The procedure allows the reversible immobilization of Drosophila larvae for high-resolution confocal imaging and the time-lapse video analysis of in vivo reporters. When combined with our antibody injection-based in situ immunostaining assay, the resulting double labeling of the hemocyte compartments can provide new information on the microanatomy and functional properties of the hematopoietic tissues in an intact state. Although this method was developed to study the immune system of Drosophila melanogaster, we anticipate that such a combination of genetic and immunological markers could become a versatile technique for in vivo studies in other biological systems too.


Assuntos
Compartimento Celular , Drosophila melanogaster/citologia , Hemócitos/citologia , Imageamento Tridimensional , Animais , Hematopoese , Imobilização , Imuno-Histoquímica , Larva , Paralisia/patologia
7.
Fly (Austin) ; 7(4): 263-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23899817

RESUMO

The NimC1 molecule has been described as a phagocytosis receptor, and is being used as a marker for professional phagocytes, the plasmatocytes, in Drosophila melanogaster. In studies including tumor-biology, developmental biology, and cell mediated immunity, monoclonal antibodies (P1a and P1b) to the NimC1 antigen are used. As we observed that these antibodies did not react with plasmatocytes of several strains and genetic combinations, a molecular analysis was performed on the structure of the nimC1 gene. In these strains we found 2 deletions and an insertion within the nimC1 gene, which may result in the production of a truncated NimC1 protein. The NimC1 positivity was regained by recombining the mutation with a wild-type allele or by using nimC1 mutant lines under heterozygous conditions. By means of these procedures or using the recombined stock, NimC1 can be used as a marker for phagocytic cells in the majority of the possible genetic backgrounds.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fagócitos/metabolismo , Receptores Imunológicos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Expressão Gênica , Variação Genética , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia
8.
Mol Immunol ; 47(11-12): 1997-2004, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20483458

RESUMO

Much of our knowledge on hematopoiesis, hematopoietic compartments, hematopoietic cell lineages and immunity has been derived from studies on the vertebrate immune system. The sophisticated innate immunity of insects, the phylogenetic conservation and the power of Drosophila genetics allowed the investigation of immune cell (hemocyte) lineage relationships in Drosophila melanogaster. The development of the hemocyte lineages in Drosophila is a result of a precisely regulated succession of intracellular and intercellular events, though the nature and extent of these interactions are not known. We describe here a cell lineage tracing system set up to analyze the development of hemocyte lineages and functionally distinct hemocyte subsets. This system allowed us to distinguish two major embryonic hemocyte lineages, the crq and Dot lineages, in two, physically separated compartments, the embryonic macrophages and the embryonic lymph gland. We followed the fate and development of these lineages in the construction of the larval hematopoietic compartments and during the cell-mediated immune response, the encapsulation reaction. Our results revealed the considerable plasticity and concerted action of the hematopoietic compartments and the hemocyte lineages in the development of the innate immune system and in the course of the cell-mediated immune response in Drosophila.


Assuntos
Linhagem da Célula , Drosophila melanogaster/imunologia , Hematopoese , Hemócitos/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Hemócitos/citologia , Imunidade Celular , Imunidade Inata , Receptores Depuradores/genética
9.
Proc Natl Acad Sci U S A ; 106(12): 4805-9, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19261847

RESUMO

The blood cells, or hemocytes, in Drosophila participate in the immune response through the production of antimicrobial peptides, the phagocytosis of bacteria, and the encapsulation of larger foreign particles such as parasitic eggs; these immune reactions are mediated by phylogenetically conserved mechanisms. The encapsulation reaction is analogous to the formation of granuloma in vertebrates, and is mediated by large specialized cells, the lamellocytes. The origin of the lamellocytes has not been formally established, although it has been suggested that they are derived from the lymph gland, which is generally considered to be the main hematopoietic organ in the Drosophila larva. However, it was recently observed that a subepidermal population of sessile blood cells is released into the circulation in response to a parasitoid wasp infection. We set out to analyze this phenomenon systematically. As a result, we define the sessile hemocytes as a novel hematopoietic compartment, and the main source of lamellocytes.


Assuntos
Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/imunologia , Hematopoese , Hemócitos/citologia , Animais , Contagem de Células , Diferenciação Celular , Separação Celular , Drosophila melanogaster/citologia , Proteínas de Fluorescência Verde/metabolismo , Hemócitos/transplante , Imunidade , Larva/citologia , Larva/imunologia , Larva/parasitologia , Fenótipo , Fatores de Tempo
10.
Acta Biol Hung ; 58 Suppl: 95-111, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18297797

RESUMO

We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.


Assuntos
Antígenos/imunologia , Hemócitos/classificação , Animais , Anticorpos Monoclonais/imunologia , Western Blotting , Compartimento Celular , Drosophila , Feminino , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Hemócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose
11.
J Cell Sci ; 116(Pt 6): 1023-33, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12584246

RESUMO

The regulatory complex of the 26S proteasome is responsible for the selective recognition and binding of multiubiquitinated proteins. It was earlier shown that the subunit S5a/Rpn10/p54 of the regulatory complex is the only cellular protein capable of binding multiubiquitin chains in an in vitro overlay assay. The role of this subunit in substrate selection, however, is a subject of debate, following the observation that its deletion in Saccharomyces cerevisiae is not lethal and instead causes only a mild phenotype. To study the function of this subunit in higher eukaryotes, a mutant Drosophila strain was constructed by deleting the single copy gene encoding subunit S5a/Rpn10/p54. This deletion caused larval-pupal polyphasic lethality, multiple mitotic defects, the accumulation of higher multimers of ubiquitinated proteins and a huge accumulation of defective 26S proteasome particles. Deletion of the subunit S5a/Rpn10/p54 does not destabilise the regulatory complex and does not disturb the assembly of the regulatory complex and the catalytic core. The pupal lethality is a consequence of the depletion of the maternally provided 26S proteasome during the larval stages and a sudden increase in the proteasomal activity demands during the first few hours of pupal development. The huge accumulation of the fully assembled 26S proteasome in the deletion mutant and the lack of free subunits or partially assembled particles indicate that there is a highly coordinated accumulation of all the subunits of the 26S proteasome. This suggests that in higher eukaryotes, as with yeast, a feedback circuit coordinately regulates the expression of the proteasomal genes, and this adjusts the actual proteasome concentration in the cells according to the temporal and/or spatial proteolytic demands.


Assuntos
Proteínas de Transporte/genética , Drosophila melanogaster/genética , Mitose/genética , Complexo de Endopeptidases do Proteassoma , Animais , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Mutagênese/fisiologia , Peptídeo Hidrolases/metabolismo , Fenótipo , Pupa/genética , Proteínas de Saccharomyces cerevisiae , Ubiquitina/metabolismo
12.
Proc Natl Acad Sci U S A ; 100(5): 2622-7, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12598653

RESUMO

We have identified a previously undescribed transmembrane protein, Hemese, from Drosophila melanogaster blood cells (hemocytes), by using a monoclonal pan-hemocyte antibody. Heavy glycosylation is suggested by the heterogeneous size distribution, ranging between 37 and 70 kDa. Hemese expression is restricted to the cell surfaces of hemocytes of all classes, and to the hematopoietic organs. The sequence of the corresponding gene, Hemese (He), predicts a glycophorin-like protein of 15 kDa, excluding an N-terminal signal peptide, with a single hydrophobic transmembrane region. The extracellular region consists mainly of Ser/Thr-rich sequence of low complexity, with several potential O-glycosylation sites. Hemese contains phosphotyrosine and the cytoplasmic region has potential phosphorylation sites, suggesting an involvement in signal transduction. Depletion of Hemese by RNA interference has no obvious effect under normal conditions, but the cellular response to parasitic wasps is much enhanced. This finding indicates that Hemese plays a modulatory role in the activation or recruitment of the hemocytes.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Hemócitos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Separação Celular , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Drosophila , Citometria de Fluxo , Biblioteca Gênica , Glicosilação , Proteínas de Fluorescência Verde , Hibridomas , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Fagocitose , Fosforilação , Testes de Precipitina , Estrutura Terciária de Proteína , RNA/metabolismo , Interferência de RNA , Transdução de Sinais , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA