Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2303, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385276

RESUMO

White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences.


Assuntos
Adipócitos/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Canais Iônicos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Calorimetria , Células Cultivadas , Feminino , Fator 1 de Crescimento de Fibroblastos/genética , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Insulina/sangue , Interleucina-6/sangue , Canais Iônicos/genética , Masculino , Camundongos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Curr Biol ; 28(5): 810-816.e3, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478852

RESUMO

Anatomical and functional asymmetries are widespread in the animal kingdom [1, 2]. In vertebrates, many visceral organs are asymmetrically placed [3]. In snails, shells and inner organs coil asymmetrically, and in Drosophila, genitalia and hindgut undergo a chiral rotation during development. The evolutionary origin of these asymmetries remains an open question [1]. Nodal signaling is widely used [4], and many, but not all, vertebrates use cilia for symmetry breaking [5]. In Drosophila, which lacks both cilia and Nodal, the unconventional myosin ID (myo1d) gene controls dextral rotation of chiral organs [6, 7]. Here, we studied the role of myo1d in left-right (LR) axis formation in Xenopus. Morpholino oligomer-mediated myo1d downregulation affected organ placement in >50% of morphant tadpoles. Induction of the left-asymmetric Nodal cascade was aberrant in >70% of cases. Expression of the flow-target gene dand5 was compromised, as was flow itself, due to shorter, fewer, and non-polarized cilia at the LR organizer. Additional phenotypes pinpointed Wnt/planar cell polarity signaling and suggested that myo1d, like in Drosophila [8], acted in the context of the planar cell polarity pathway. Indeed, convergent extension of gastrula explant cultures was inhibited in myo1d morphants, and the ATF2 reporter gene for non-canonical Wnt signaling was downregulated. Finally, genetic interference experiments demonstrated a functional interaction between the core planar cell polarity signaling gene vangl2 and myo1d in LR axis formation. Thus, our data identified myo1d as a common denominator of arthropod and chordate asymmetry, in agreement with a monophyletic origin of animal asymmetry.


Assuntos
Padronização Corporal/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Miosinas/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Animais , Polaridade Celular/genética , Gástrula/embriologia , Miosinas/metabolismo , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA