Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 218: 106450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395208

RESUMO

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the global pandemic of COVID-19 in 2020. Through structural analysis, it was found that several amino acid residues in the human angiotensin-converting enzyme-2 (hACE2) receptor directly interact with those in the receptor binding domain (RBD) of the spike glycoprotein (S-protein). Various cell lines, including HEK293, HeLa cells, and the baculovirus expression vector system (BEVS) with the insect cell line Sf9, have been utilized to produce the RBD. In this study, we investigated the use of Bombyx mori nucleopolyhedrovirus (BmNPV) and BEVS. For efficient production of a highly pure recombinant RBD protein, we designed it with two tags (His tag and STREP tag) at the C-terminus and a solubilizing tag (SUMO) at the N-terminus. After expressing the protein using BmNPV and silkworm and purifying it with a HisTrap excel column, the eluted protein was digested with SUMO protease and further purified using a Strep-Tactin Superflow column. As a result, we obtained the RBD as a monomer with a yield of 2.6 mg/10 mL serum (equivalent to 30 silkworms). The RBD showed an affinity for the hACE2 receptor. Additionally, the RBDs from the Alpha, Beta, Gamma, Delta, and Omicron variants were expressed and purified using the same protocol. It was found that the RBD from the Alpha, Beta, Gamma, and Delta variants could be obtained with yields of 1.4-2.6 mg/10 mL serum and had an affinity to the hACE2 receptor.


Assuntos
Bombyx , COVID-19 , Nucleopoliedrovírus , Animais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Bombyx/genética , Bombyx/metabolismo , Células HeLa , Células HEK293 , Proteínas Recombinantes , Ligação Proteica
2.
Artigo em Inglês | MEDLINE | ID: mdl-37207740

RESUMO

Tributyltin (TBT)-binding protein type 1 in Japanese medaka (Oryzias latipes) (O.latTBT-bp1) is a fish lipocalin implicated in TBT binding and detoxification. We purified recombinant O.latTBT-bp1 (rO.latTBT-bp1; ca. 30 kDa) by using a baculovirus expression system and His- and Strep-tag chromatography process. Then, we examined O.latTBT-bp1 binding to several endo/exogenous steroid hormones by means of competitive binding assay. The dissociation constants for the binding of rO.latTBT-bp1 to DAUDA and ANS, two fluorescent ligands of lipocalin, were 7.06 and 13.6 µM, respectively. Multiple model validations indicated that a single-binding-site model was the most appropriate for evaluating rO.latTBT-bp1 binding. In the competitive binding assay, testosterone, 11-ketotestosterone, and 17ß-estradiol were each bound by rO.latTBT-bp1; rO.latTBT-bp1 showed the strongest affinity for testosterone (inhibition constant, Ki = 3.47 µM). Endocrine-disrupting chemical (synthetic steroid) also bound to rO.latTBT-bp1; the affinity for ethinylestradiol (Ki = 9.29 µM) was stronger than that for 17ß-estradiol (Ki = 30.0 µM). To determine the function of O.latTBT-bp1, we produced TBT-bp1 knockout medaka (TBT-bp1 KO), which we exposed to ethinylestradiol for 28 days. After exposure, the number of papillary processes in TBT-bp1 KO genotypic male medaka was significantly fewer (3.5), compared to that in wild-type male medaka (22). Thus, TBT-bp1 KO medaka were more sensitive to the anti-androgenic effects of ethinylestradiol than wild-type medaka. These results indicate that O.latTBT-bp1 may bind to steroids and act as a gatekeeper of ethinylestradiol action by regulating the androgen-estrogen balance.


Assuntos
Etinilestradiol , Oryzias , Animais , Masculino , Etinilestradiol/toxicidade , Etinilestradiol/metabolismo , Peixes/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Estradiol/metabolismo , Testosterona/metabolismo , Oryzias/metabolismo
3.
J Pharm Sci ; 112(2): 411-415, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334812

RESUMO

Malaria is a mosquito-borne infectious disease that is widespread in developing countries. Malaria vaccines are important in efforts to eradicate malaria; however, vaccines are usually administered by injection, which requires medical personnel and has a risk of causing infection. Transdermal vaccines can be administered without damaging the skin and thus are ideal for the prevention of malaria. However, the stratum corneum forms a "brick and mortar" like structure in which stratum corneum cells are embedded in a hydrophobic matrix composed of lipids, which strongly inhibits the permeation of hydrophilic substances. In the present study, we designed a transdermal vaccine against vivax malaria using a solid-in-oil (S/O) dispersion. The S/O dispersion of a transmission blocking vaccine candidate, Pvs25 from Plasmodium vivax, showed higher skin penetration than that of the aqueous solution. Mice immunized with the S/O dispersion generated antibodies at similar titers as the mice immunized by injection, over the mid- to long-term. These results provide information for the development of transdermally administered malaria vaccines toward the eradication of malaria.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Antígenos de Protozoários , Vacinas Sintéticas , Anticorpos Antiprotozoários , Malária/prevenção & controle
4.
J Pharmacol Sci ; 149(3): 108-114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641023

RESUMO

Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and social and economic activities are gradually recovering. However, the presence of vaccine-resistant variants has been reported, and the development of therapeutic agents for patients with severe COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is different from their original indication. The risk of severe COVID-19 and mortality increases with advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three protein-protein interactions that are related to heart failure, and recently identified that one mechanism increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent finding of a new protein-protein interaction that is common to COVID-19 aggravation and heart failure.


Assuntos
Tratamento Farmacológico da COVID-19 , Insuficiência Cardíaca , Animais , Reposicionamento de Medicamentos , Humanos , Mamíferos , SARS-CoV-2
5.
Protein Expr Purif ; 195-196: 106096, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460871

RESUMO

Plasmodium vivax ookinete surface protein, Pvs25, is a candidate for a transmission-blocking vaccine (TBV) for malaria. Pvs25 has four EGF-like domains containing 22 cysteine residues forming 11 intramolecular disulfide bonds, a structural feature that makes its recombinant protein expression difficult. In this study, we report the high expression of recombinant Pvs25 as a soluble form in silkworm, Bombyx mori. The Pvs25 protein was purified from hemolymphs of larvae and pupae by affinity chromatography. In the Pvs25 expressed by silkworm, no isoforms with inappropriate disulfide bonds were found, requiring no further purification step, which is necessary in the case of Pichia pastoris-based expression systems. The Pvs25 from silkworm was confirmed to be molecularly uniform by sodium dodecyl sulfate gel electrophoresis and size-exclusion chromatography. To examine the immunogenicity, the Pvs25 from B. mori was administered to BALB/c mice subcutaneously with oil adjuvant. The Pvs25 produced by silkworm induced potent and robust immune responses, and the induced antisera correctly recognized P. vivax ookinetes in vitro, demonstrating the potency of Pvs25 from silkworm as a candidate for a malaria TBV. To the best of our knowledge, this is the first study to construct a system for mass-producing malaria TBV antigens using silkworm.


Assuntos
Bombyx , Vacinas Antimaláricas , Malária Vivax , Animais , Antígenos de Protozoários/genética , Antígenos de Superfície , Bombyx/genética , Dissulfetos , Vacinas Antimaláricas/genética , Malária Vivax/prevenção & controle , Camundongos , Plasmodium vivax/genética
6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613540

RESUMO

Myocardial damage caused by the newly emerged coronavirus (SARS-CoV-2) infection is one of the key determinants of COVID-19 severity and mortality. SARS-CoV-2 entry to host cells is initiated by binding with its receptor, angiotensin-converting enzyme (ACE) 2, and the ACE2 abundance is thought to reflect the susceptibility to infection. Here, we report that ibudilast, which we previously identified as a potent inhibitor of protein complex between transient receptor potential canonical (TRPC) 3 and NADPH oxidase (Nox) 2, attenuates the SARS-CoV-2 spike glycoprotein pseudovirus-evoked contractile and metabolic dysfunctions of neonatal rat cardiomyocytes (NRCMs). Epidemiologically reported risk factors of severe COVID-19, including cigarette sidestream smoke (CSS) and anti-cancer drug treatment, commonly upregulate ACE2 expression level, and these were suppressed by inhibiting TRPC3-Nox2 complex formation. Exposure of NRCMs to SARS-CoV-2 pseudovirus, as well as CSS and doxorubicin (Dox), induces ATP release through pannexin-1 hemi-channels, and this ATP release potentiates pseudovirus entry to NRCMs and human iPS cell-derived cardiomyocytes (hiPS-CMs). As the pseudovirus entry followed by production of reactive oxygen species was attenuated by inhibiting TRPC3-Nox2 complex in hiPS-CMs, we suggest that TRPC3-Nox2 complex formation triggered by panexin1-mediated ATP release participates in exacerbation of myocardial damage by amplifying ACE2-dependent SARS-CoV-2 entry.


Assuntos
COVID-19 , NADPH Oxidase 2 , Canais de Cátion TRPC , Animais , Humanos , Ratos , Trifosfato de Adenosina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/metabolismo , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Regulação para Cima , Canais de Cátion TRPC/metabolismo
7.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34514356

RESUMO

Proper chromosome segregation during mitosis requires both the assembly of a microtubule (MT)-based spindle and the assembly of DNA-centromere-based kinetochore structure. Kinetochore-to-MT attachment enables chromosome separation. Monocentric cells, such as found in human, have one unique kinetochore per chromosome. Holocentric cells, such as found in the silkworm, in contrast, have multiple kinetochore structures per chromosome. Interestingly, some human cancer chromosomes contain more than one kinetochore, a condition called di- and tricentric. Thus, comparing how wild-type mono- and holocentric cells perform mitosis may provide novel insights into cancer di- and tricentric cell mitosis. We present here live-cell imaging of human RPE1 and silkworm BmN4 cells, revealing striking differences in spindle architecture and dynamics, and highlighting differential kinesin function between mono- and holocentric cells.

8.
Vet Res ; 52(1): 102, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233749

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen of watery diarrhea that causes serious economic loss to the swine industry worldwide. Especially because of the high mortality rate in neonatal piglets, a vaccine with less production cost and high protective effect against PEDV is desired. The intrinsically assembled homotrimer of spike (S) protein on the PEDV viral membrane contributing to the host cell entry is a target of vaccine development. In this study, we designed trimerized PEDV S protein for efficient production in the silkworm-baculovirus expression vector system (silkworm-BEVS) and evaluated its immunogenicity in the mouse. The genetic fusion of the trimeric motif improved the expression of S protein in silkworm-BEVS. A small-scale screening of silkworm strains to further improve the S protein productivity finally achieved the yield of about 2 mg from the 10 mL larval serum. Mouse immunization study demonstrated that the trimerized S protein could elicit strong humoral immunity, including the S protein-specific IgG in the serum. These sera contained neutralizing antibodies that can protect Vero cells from PEDV infection. These results demonstrated that silkworm-BEVS provides a platform for the production of trimeric S proteins, which are promising subunit vaccines against coronaviruses such as PEDV.


Assuntos
Anticorpos Neutralizantes/biossíntese , Bombyx/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Seda/biossíntese , Glicoproteína da Espícula de Coronavírus/genética , Animais , Bombyx/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Camundongos , Vírus da Diarreia Epidêmica Suína/metabolismo , Multimerização Proteica
9.
Insects ; 12(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199525

RESUMO

The tumor necrosis factor α (TNFα) has been employed as a promising reagent in treating autoimmunity and cancer diseases. To meet the substantial requirement of TNFα proteins, we report in this study that mature types of recombinant human and murine TNFα proteins are successfully expressed in the baculovirus expression system using silkworm larvae as hosts. The biological activities of purified products were verified in culture murine L929 cells, showing better performance over a commercial Escherichia coli-derived murine TNFα. By comparing the activity of purified TNFα with or without the tag removal, it is also concluded that the overall activity of purified TNFα cytokines could be further improved by the complete removal of C-terminal fusion tags. Collectively, our current attempt demonstrates an alternative platform for supplying high-quality TNFα products with excellent activities for further pharmaceutical and clinical trials.

10.
PLoS Pathog ; 17(6): e1009649, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081755

RESUMO

Parasitic helminths can reside in humans owing to their ability to disrupt host protective immunity. Receptor for advanced glycation end products (RAGE), which is highly expressed in host skin, mediates inflammatory responses by regulating the expression of pro-inflammatory cytokines and endothelial adhesion molecules. In this study, we evaluated the effects of venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic helminth Strongyloides venezuelensis, on RAGE activity and immune responses. Our results demonstrated that venestatin bound to RAGE and downregulated the host immune response. Recombinant venestatin predominantly bound to the RAGE C1 domain in a Ca2+-dependent manner. Recombinant venestatin effectively alleviated RAGE-mediated inflammation, including footpad edema in mice, and pneumonia induced by an exogenous RAGE ligand. Infection experiments using S. venezuelensis larvae and venestatin silencing via RNA interference revealed that endogenous venestatin promoted larval migration from the skin to the lungs in a RAGE-dependent manner. Moreover, endogenous venestatin suppressed macrophage and neutrophil accumulation around larvae. Although the invasion of larvae upregulated the abundance of RAGE ligands in host skin tissues, mRNA expression levels of tumor necrosis factor-α, cyclooxygenase-2, endothelial adhesion molecules vascular cell adhesion protein-1, intracellular adhesion molecule-1, and E-selectin were suppressed by endogenous venestatin. Taken together, our results indicate that venestatin suppressed RAGE-mediated immune responses in host skin induced by helminthic infection, thereby promoting larval migration. The anti-inflammatory mechanism of venestatin may be targeted for the development of anthelminthics and immunosuppressive agents for the treatment of RAGE-mediated inflammatory diseases.


Assuntos
Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Strongyloides/imunologia , Strongyloides/metabolismo , Estrongiloidíase/metabolismo , Animais , Larva/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Strongyloides/patogenicidade
11.
ACS Omega ; 6(11): 7374-7386, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778250

RESUMO

One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method for COVID-19 diagnostics. Notwithstanding the facts that one-step qRT-PCR is well suited for the diagnosis of COVID-19 and that there are many commercially available one-step qRT-PCR kits in the market, their high cost and unavailability due to airport closures and shipment restriction became a major bottleneck that had driven the desire to produce the key components of such kits locally. Here, we provide a simple, economical, and powerful one-step qRT-PCR kit based on patent-free, specifically tailored versions of Moloney murine leukemia virus reverse transcriptase and Thermus aquaticus DNA polymerase and termed R3T (Rapid Research Response Team) one-step qRT-PCR. We also demonstrate the robustness of our enzyme production strategies and provide the optimal reaction conditions for their efficient augmentation in a one-step approach. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity to that of the Invitrogen SuperScript III Platinum One-step qRT-PCR and TaqPath one-step RT-qPCR kits. Overall, our kit has shown robust performance in both laboratory settings and the Saudi Ministry of Health-approved testing facility.

12.
Biochemistry ; 59(39): 3757-3771, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901486

RESUMO

Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.


Assuntos
Selectina E/metabolismo , Fucosiltransferases/metabolismo , Polissacarídeos/metabolismo , Células-Tronco/metabolismo , Animais , Bombyx/genética , Linhagem Celular , Linhagem Celular Tumoral , Fucosiltransferases/genética , Expressão Gênica , Humanos , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
J Biol Chem ; 295(11): 3719-3733, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31949047

RESUMO

Selectins are key to mediating interactions involved in cellular adhesion and migration, underlying processes such as immune responses, metastasis, and transplantation. Selectins are composed of a lectin domain, an epidermal growth factor (EGF)-like domain, multiple short consensus repeats (SCRs), a transmembrane domain, and a cytoplasmic tail. It is well-established that the lectin and EGF domains are required to mediate interactions with ligands; however, the contributions of the other domains in mediating these interactions remain obscure. Using various E-selectin constructs produced in a newly developed silkworm-based expression system and several assays performed under both static and physiological flow conditions, including flow cytometry, glycan array analysis, surface plasmon resonance, and cell-rolling assays, we show here that a reduction in the number of SCR domains is correlated with a decline in functional E-selectin binding to hematopoietic cell E- and/or L-selectin ligand (HCELL) and P-selectin glycoprotein ligand-1 (PSGL-1). Moreover, the binding was significantly improved through E-selectin dimerization and by a substitution (A28H) that mimics an extended conformation of the lectin and EGF domains. Analyses of the association and dissociation rates indicated that the SCR domains, conformational extension, and dimerization collectively contribute to the association rate of E-selectin-ligand binding, whereas just the lectin and EGF domains contribute to the dissociation rate. These findings provide the first evidence of the critical role of the association rate in functional E-selectin-ligand interactions, and they highlight that the SCR domains have an important role that goes beyond the structural extension of the lectin and EGF domains.


Assuntos
Selectina E/química , Selectina E/metabolismo , Animais , Bombyx , Linhagem Celular Tumoral , Selectina E/isolamento & purificação , Humanos , Proteínas Imobilizadas/metabolismo , Cinética , Ligantes , Camundongos , Polissacarídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade
14.
Protein Expr Purif ; 159: 69-74, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30917920

RESUMO

Human granulocyte-macrophage colony stimulating factor (hGM-CSF) is a hematopoietic growth factor. It is widely employed as a therapeutic agent targeting neutropenia in cancer patients undergoing chemotherapy and in patients with AIDS or after bone marrow transplantation. In this study, we constructed the recombinant baculoviruses for the expression of recombinant hGM-CSF (rhGM-CSF) with two small affinity tags (His-tag and Strep-tag) at the N or C-terminus. Compared to N-tagged rhGM-CSF, C-tagged rhGM-CSF was highly recovered from silkworm hemolymph. The purified rhGM-CSF proteins migrated as a diffuse band and were confirmed to hold N-glycosylations. A comparable activity was achieved when commercial hGM-CSF was tested as a control. Considering the high price of hGM-CSF in the market, our results and strategies using silkworm-baculovirus system can become a great reference for mass production of the active rhGM-CSF at a lower cost.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Animais , Baculoviridae/genética , Sequência de Bases , Bombyx/genética , Extratos Celulares/química , Linhagem Celular , Cromatografia de Afinidade , Expressão Gênica , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Viroses
15.
Mol Biotechnol ; 60(12): 924-934, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30302632

RESUMO

Human α1-antitrypsin (AAT) is the most abundant serine proteinase inhibitor (serpin) in the human plasma. Commercially available AAT for the medications of deficiency of α1-antitrypsin is mainly purified from human plasma. There is a high demand for a stable and low-cost supply of recombinant AAT (rAAT). In this study, the baculovirus expression vector system using silkworm larvae as host was employed and a large amount of highly active AAT was recovered from the silkworm serum (~ 15 mg/10 ml) with high purity. Both the enzymatic activity and stability of purified rAAT were comparable with those of commercial product. Our results provide an alternative method for mass production of the active rAAT in pharmaceutical use.


Assuntos
Baculoviridae/genética , Bombyx/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Animais , Bombyx/metabolismo , Linhagem Celular , Clonagem Molecular , Humanos , Larva/genética , Larva/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/isolamento & purificação , alfa 1-Antitripsina/metabolismo
16.
Appl Microbiol Biotechnol ; 102(20): 8783-8797, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136207

RESUMO

Mucin-type O-glycosylation is initiated by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts or PGANTs), attaching GalNAc to serine or threonine residue of a protein substrate. In the insect model from Lepidoptera, silkworm (Bombyx mori), however, O-glycosylation pathway is totally unexplored and remains largely unknown. In this study, as the first report regarding protein O-glycosylation analysis in silkworms, we verified the O-glycan profile that a common core 1 Gal (ß1-3) GalNAc disaccharide branch without terminally sialylated structure is mainly formed for a baculovirus-produced human proteoglycan 4 (PRG4) protein. Intriguingly, functional screenings in cultured silkworm BmN4 cells for nine Bmpgants reveal that Bmpgant2 is the solo functional BmPGANT for PRG4, implying that Bmpgants may have unique cell/tissue or protein substrate preferences. Furthermore, a recombinant BmPGANT2 protein was successfully purified from silkworm-BEVS and exhibited a high ability to transfer GalNAc for both peptide and protein substrates. Taken together, the present results clarified the functional BmPGANT2 in cultured silkworm cells, providing crucial fundamental insights for future studies dissecting the detailed silkworm O-glycosylation pathways and productions of glycoproteins with O-glycans.


Assuntos
Bombyx/enzimologia , Proteínas de Insetos/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Motivos de Aminoácidos , Animais , Bombyx/química , Bombyx/genética , Bombyx/metabolismo , Células Cultivadas , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Proteínas de Insetos/genética , N-Acetilgalactosaminiltransferases/genética , Polissacarídeos/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
17.
J Biol Chem ; 293(18): 7008-7016, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29523691

RESUMO

Rheumatoid factors (RFs) are autoantibodies against the fragment-crystallizable (Fc) region of IgG. In individuals with hematological diseases such as cryoglobulinemia and certain B cell lymphoma forms, the RFs derived from specific heavy- and light-chain germline pairs, so-called "stereotypic RFs," are frequently produced in copious amounts and form immune complexes with IgG in serum. Of note, many structural details of the antigen recognition mechanisms in RFs are unclear. Here we report the crystal structure of the RF YES8c derived from the IGHV1-69/IGKV3-20 germline pair, the most common of the stereotypic RFs, in complex with human IgG1-Fc at 2.8 Å resolution. We observed that YES8c binds to the CH2-CH3 elbow in the canonical antigen-binding manner involving a large antigen-antibody interface. On the basis of this observation, combined with mutational analyses, we propose a recognition mechanism common to IGHV1-69/IGKV3-20 RFs: (1) the interaction of the Leu432-His435 region of Fc enables the highly variable complementarity-determining region (CDR)-H3 to participate in the binding, (2) the hydrophobic tip in the CDR-H2 typical of IGHV1-69 antibodies recognizes the hydrophobic patch on Fc, and (3) the interaction of the highly conserved RF light chain with Fc is important for RF activity. These features may determine the putative epitope common to the IGHV1-69/IGKV3-20 RFs. We also showed that some mutations in the binding site of RF increase the affinity to Fc, which may aggravate hematological diseases. Our findings unravel the structural basis for germline-encoded antibody autoreactivity.


Assuntos
Autoanticorpos/química , Autoanticorpos/imunologia , Células Germinativas , Fator Reumatoide/metabolismo , Substituição de Aminoácidos , Afinidade de Anticorpos , Sítios de Ligação , Regiões Determinantes de Complementaridade , Cristalografia por Raios X , Epitopos/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/química , Imunoglobulina G/imunologia , Mutagênese , Conformação Proteica , Receptores Fc , Fator Reumatoide/química , Fator Reumatoide/imunologia , Relação Estrutura-Atividade
18.
Sci Rep ; 7(1): 15536, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138491

RESUMO

Polo-like kinase 1 (Plk1) is a crucial cell cycle regulator by its specific localization and activity during cell cycle. It has been shown that the phosphorylation and ubiquitylation of Plk1 are required for its own activation and localization. Here, we report that SUMOylation regulates the activity of Plk1 in the lepidopteran insect of Bombyx mori. In the absence of SUMOylation, it causes the lost localization of Plk1 on centrosomes and kinetochores, as well as an uneven distribution in midzone. We further identify that the putative SUMOylation site of Bombyx Plk1 at lysine 466 is required for its localization on centrosomes, and K466 mutation in Plk1 could influence its interaction with Smt3/Ubc9 complex. These findings are also confirmed by Drosophila Polo and human Plk1, which together reveals a conserved role of Plk1 SUMOylation in mammals. Moreover, conjugation of Smt3 to Plk1 SUMOylation mutant promotes its localization on centrosomes and kinetochores, and rescues functional defects of chromosome alignment in cells depleted of endogenous Plk1. Altogether, the present data indicate that the SUMOylation of Plk1 could participate in proper chromosome alignment and segregation during mitosis, and provides a novel layer for the regulation of Plk1 localization and activity throughout cell cycle.


Assuntos
Bombyx/citologia , Bombyx/enzimologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proteínas de Insetos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sumoilação , Animais , Bombyx/genética , Proteínas de Ciclo Celular/genética , Centrossomo/enzimologia , Segregação de Cromossomos , Drosophila/metabolismo , Cinetocoros/enzimologia , Mitose , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Quinase 1 Polo-Like
19.
Artigo em Inglês | MEDLINE | ID: mdl-26276225

RESUMO

We reported previously that baculovirus AcMNPV host-ranges in silkworm strains are controlled by a novel third chromosomal locus. To further isolate the potential host factor and uncover the functional pathway involved, in this study we analyzed hemolymph proteins from AcMNPV-resistant or -sensitive silkworm strains infected with baculoviruses. All the protein spots from 2D electrophoresis were characterized by MALDI-TOF MS and further systematically assessed for differentially regulated proteins at different stages of infection. Subsequently, six candidates were selected for functional analysis using Bm5 cells, where the candidates were knocked-down or overexpressed. We observed that mRNA expression levels of beta-N-acetylglucosaminidase and prophenoloxidase subunit 2 are significantly upregulated during AcMNPV infections in Bm5 cells. Ultimately, we found that RNA interference of ribosomal protein RpL34 causes serious damages to cell viability as well as abortive infection, indicating that ribosomal components are essential for productive baculovirus infection.


Assuntos
Bombyx/virologia , Hemolinfa/virologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Nucleopoliedrovírus/fisiologia , Acetilglucosaminidase/análise , Acetilglucosaminidase/genética , Animais , Bombyx/citologia , Bombyx/genética , Catecol Oxidase/análise , Catecol Oxidase/genética , Linhagem Celular , Precursores Enzimáticos/análise , Precursores Enzimáticos/genética , Regulação da Expressão Gênica , Hemolinfa/metabolismo , Nucleopoliedrovírus/isolamento & purificação , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Biochim Biophys Acta ; 1850(6): 1107-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25659958

RESUMO

BACKGROUND: Naturally occurring single mutants, I56T, F57I, W64R and D67H of lysozyme in human, have been known to form abnormal protein aggregates (amyloid fibrils) and to accumulate in several organs, including the liver, spleen and kidney, resulting in familial systemic amyloidosis. These human pathogenic lysozyme variants are considered to raise subtle conformational changes compared to the wild type. METHODS: Here we examined the effects of the aberrant mutant lysozymes I56T, F57I, W64R and D67H, each of which possesses a point mutation in its molecule, on a cultured human cell line, HEK293, in which the genes were individually integrated and overexpressed. RESULTS: Western blot analyses showed lesser amounts of these variant proteins in the medium compared to the wild type, but they were abundant in the cell pellets, indicating that the modified lysozyme proteins were scarcely secreted into the medium but were retained in the cells. Immunocytochemistry revealed that these proteins resided in restricted regions which were stained by an endoplasmic reticulum (ER) marker. Moreover, the overexpression of the mutant lysozymes were accompanied by marked increases in XBP-1s and GRP78/BiP, which are downstream agents of the IRE1α signaling pathway responding to the unfolded protein response (UPR) upon ER stress. RNAi for the mutant lysozymes' expression greatly suppressed the increases of these agents. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our results suggest that the accumulation of pathogenic lysozymes in the ER caused ER stress and the UPR response mainly via the IRE1α pathway.


Assuntos
Amiloidose Familiar/enzimologia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Muramidase/metabolismo , Transdução de Sinais , Amiloidose Familiar/genética , Proteínas de Ligação a DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Regulação Enzimológica da Expressão Gênica , Genótipo , Células HEK293 , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Muramidase/química , Muramidase/genética , Mutação , Fenótipo , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Transfecção , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA