Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 72(5): 1407-1417, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32715434

RESUMO

BACKGROUND: Multiple myeloma (MM) is defined as plasma cells malignancy, developing in the bone marrow. At the beginning of the disease, the malignant plasma cells are dependent on bone marrow microenvironment, providing growth and survival factors. Importantly, the recent studies pointed hypoxia as an important factor promoting progression of MM. In particular, hypoxia-triggered HIF-1 signaling was shown to promote chemoresistance, angiogenesis, invasiveness and induction of immature phenotype, suggesting that strategies targeting HIF-1 may contribute to improvement of anti-myeloma therapies. METHODS: The Western Blot and RT-PCR techniques were applied to analyze the influence of metformin on HIF-1 pathway in MM cells. To evaluate the effect of metformin on the growth of MM cell lines in normoxic and hypoxic conditions the MTT assay was used. The apoptosis induction in metformin treated hypoxic and normoxic cells was verified by Annexin V/PI staining followed by FACS analysis. RESULTS: Our results showed, for the first time, that metformin inhibits HIF-1 signaling in MM cells. Moreover, we demonstrated the effect of metformin to be mainly oxygen dependent, since the HIF-1 pathway was not significantly affected by metformin in anoxic conditions as well as after application of hypoxic mimicking compound, CoCl2. Our data also revealed that metformin triggers the growth arrest without inducing apoptosis in either normoxic or hypoxic conditions. CONCLUSIONS: Taken together, our study indicates metformin as a promising candidate for developing new treatment strategies exploiting HIF-1 signaling inhibition to enhance the overall anti-MM effect of currently used therapies, that may considerably benefit MM patients.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Metformina/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos
2.
Acta Biochim Pol ; 65(1): 101-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543923

RESUMO

Multiple myeloma (MM) is characterized as a clonal expansion of malignant plasma cells in the bone marrow, which is often associated with pancytopenia and osteolytic bone disease. Interestingly, myeloma-infiltrated bone marrow is considered to be hypoxic, providing selection pressure for a developing tumour. Since HSP90 was shown to participate in stabilization of the subunit of the key transcription factor HIF-1, which controls the hypoxic response, the aim of this study was to investigate the influence of a HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), on MM cells cultured under low oxygenation conditions. We confirmed that 17-AAG inhibits hypoxic induction of the HIF-1 target genes in malignant plasma cells and demonstrate the concentration range of severe hypoxia-specific cytotoxicity. Next, we selected the malignant plasma cells under severe hypoxia/re-oxygenation culture conditions in the presence or absence of 17-AAG and subsequently, the cells which survived were further expanded and analyzed. Interestingly, we have noticed significant changes in the survival and the response to anti-MM drugs between the parental cell lines and those selected in cyclic severe hypoxia in the presence and absence of 17-AAG. Importantly, we also observed that the lack of oxygen itself, irrespectively of HIF-1 inhibition, is the main/pivotal factor driving the selection process in the experiments presented here.


Assuntos
Benzoquinonas/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/uso terapêutico , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA