Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 619(7971): 811-818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407817

RESUMO

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.


Assuntos
Flavina-Adenina Dinucleotídeo , Hepacivirus , Capuzes de RNA , RNA Viral , Animais , Humanos , Camundongos , Quimera/virologia , Flavina-Adenina Dinucleotídeo/metabolismo , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/virologia , Reconhecimento da Imunidade Inata , Fígado/virologia , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética , Capuzes de RNA/metabolismo
2.
Front Immunol ; 14: 1111123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776851

RESUMO

Introduction: Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. Methods: MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. Results: Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. Conclusion: Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.


Assuntos
MicroRNAs , Nanotubos de Carbono , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Epigênese Genética , Macrófagos/metabolismo , Inflamação/metabolismo , Celulose/metabolismo
3.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32409420

RESUMO

BACKGROUND: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM. METHODS: Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo. RESULTS: Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM. CONCLUSIONS: Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


Assuntos
5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Mieloma Múltiplo/patologia , Receptor A2A de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Prognóstico , Receptor A2A de Adenosina/metabolismo , Taxa de Sobrevida
4.
Front Mol Biosci ; 5: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29417049

RESUMO

The cellular prion protein PrPC is highly expressed in neurons, but also present in non-neuronal tissues, including the testicles and spermatozoa. Most immune cells and their bone marrow precursors also express PrPC. Clearly, this protein operates in highly diverse cellular contexts. Investigations into putative stress-protective roles for PrPC have resulted in an array of functions, such as inhibition of apoptosis, stimulation of anti-oxidant enzymes, scavenging roles, and a role in nuclear DNA repair. We have studied stress resilience of spermatozoa and peripheral blood mononuclear cells (PBMCs) derived from non-transgenic goats that lack PrPC (PRNPTer/Ter) compared with cells from normal (PRNP+/+) goats. Spermatozoa were analyzed for freeze tolerance, DNA integrity, viability, motility, ATP levels, and acrosome intactness at rest and after acute stress, induced by Cu2+ ions, as well as levels of reactive oxygen species (ROS) after exposure to FeSO4 and H2O2. Surprisingly, PrPC-negative spermatozoa reacted similarly to normal spermatozoa in all read-outs. Moreover, in vitro exposure of PBMCs to Doxorubicin, H2O2 and methyl methanesulfonate (MMS), revealed no effect of PrPC on cellular survival or global accumulation of DNA damage. Similar results were obtained with human neuroblastoma (SH-SY5Y) cell lines stably expressing varying levels of PrPC. RNA sequencing of PBMCs (n = 8 of PRNP+/+ and PRNPTer/Ter) showed that basal level expression of genes encoding DNA repair enzymes, ROS scavenging, and antioxidant enzymes were unaffected by the absence of PrPC. Data presented here questions the in vitro cytoprotective roles previously attributed to PrPC, although not excluding such functions in other cell types or tissues during inflammatory stress.

5.
Sci Rep ; 7(1): 4384, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663564

RESUMO

Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone. In this work we have characterized DNA glycosylases NEIL1 and NEIL2 (Neil1 -/- /Neil2 -/-) double and NEIL1, NEIL2 and NEIL3 (Neil1 -/- /Neil2 -/- /Neil3 -/-) triple knock-out mouse models. Unexpectedly, our results show that these mice are not prone to cancer and have no elevated mutation frequencies under normal physiological conditions. Moreover, telomere length is not affected and there was no accumulation of oxidative DNA damage compared to wild-type mice. These results strengthen the hypothesis that the NEIL enzymes are not simply back-up enzymes for each other but enzymes that have distinct functions beyond canonical repair.


Assuntos
DNA Glicosilases/deficiência , Predisposição Genética para Doença , Taxa de Mutação , Mutação , Neoplasias/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Estudos de Associação Genética , Loci Gênicos , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Família Multigênica , Neoplasias/metabolismo , Neoplasias/patologia , Dicromato de Potássio/farmacologia
6.
Free Radic Biol Med ; 97: 386-397, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27381496

RESUMO

BACKGROUND: Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. METHODS: BER gene expression levels were analyzed in 162 carotid plaques, 8 disease-free carotid specimens from patients with carotid plaques and 10 non-atherosclerotic control arteries. Genomic integrity, mitochondrial (mt) DNA copy number, oxidative DNA damage and BER proteins were evaluated in a subgroup of plaques and controls. RESULTS: Our major findings were: (i) The BER pathway showed a global increased transcriptional response in plaques as compared to control arteries, accompanied by increased expression of several BER proteins. (ii) Whereas nuclear DNA stability was maintained within carotid plaques, mtDNA integrity and copy number were decreased. (iii) Within carotid plaques, mRNA levels of several BER genes correlated with macrophage markers. (iv) In vitro, some of the BER genes were highly expressed in the anti-inflammatory and pro-resolving M2 macrophages, showing increased expression upon exposure to modified lipids. CONCLUSIONS: The increased transcriptional response of BER genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion.


Assuntos
Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/genética , Reparo do DNA , DNA Mitocondrial/genética , Idoso , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Dano ao DNA , Feminino , Expressão Gênica , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
7.
Sci Rep ; 6: 28337, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27328939

RESUMO

Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe(-/-)Neil3(-/-) mice on high-fat diet showed accelerated plaque formation as compared to Apoe(-/-) mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe(-/-)Neil3(-/-) mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage.


Assuntos
Aterosclerose/prevenção & controle , Reparo do DNA , Endodesoxirribonucleases/genética , Metabolismo dos Lipídeos , N-Glicosil Hidrolases/genética , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout para ApoE , N-Glicosil Hidrolases/metabolismo , Estresse Oxidativo
8.
Nat Commun ; 7: 10806, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26932196

RESUMO

Cytosine methylation in CpG dinucleotides is an epigenetic DNA modification dynamically established and maintained by DNA methyltransferases and demethylases. Molecular mechanisms of active DNA demethylation began to surface only recently with the discovery of the 5-methylcytosine (5mC)-directed hydroxylase and base excision activities of ten-eleven translocation (TET) proteins and thymine DNA glycosylase (TDG). This implicated a pathway operating through oxidation of 5mC by TET proteins, which generates substrates for TDG-dependent base excision repair (BER) that then replaces 5mC with C. Yet, direct evidence for a productive coupling of TET with BER has never been presented. Here we show that TET1 and TDG physically interact to oxidize and excise 5mC, and proof by biochemical reconstitution that the TET-TDG-BER system is capable of productive DNA demethylation. We show that the mechanism assures a sequential demethylation of symmetrically methylated CpGs, thereby avoiding DNA double-strand break formation but contributing to the mutability of methylated CpGs.


Assuntos
Metilação de DNA , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Ilhas de CpG , Citosina/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Epigênese Genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Proto-Oncogênicas/genética , Timina DNA Glicosilase/genética
9.
J Exp Bot ; 58(10): 2537-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17545220

RESUMO

Plants are equipped with a range of defence mechanisms against herbivorous insects. In cruciferous species, jasmonic acid, salicylic acid, and ethylene along with glucosinolates and their hydrolysis products play important roles in plant protection and plant-insect communication. In turn, a number of herbivores have adapted to plants that contain glucosinolates. As a result of adaptation to their host plants, specialized insects may elicit different plant-inducible responses than generalists. Oligonucleotide microarrays and qRT-PCR analysis were used to characterize transcriptional profiles of Arabidopsis thaliana plants in response to infestation with a generalist aphid, Myzus persicae, or a cruciferous plant specialist, Brevicoryne brassicae. To find possible differences and similarities in molecular responses between plants differing in predominant glucosinolate hydrolysis products, three ecotypes of A. thaliana were chosen: Wassilewskija (Ws), Cape Verde Islands (Cvi), and Landsberg erecta (Ler), which, respectively, produce mainly isothiocyanates, epithionitriles, and nitriles. In all three ecotypes, general stress-responsive genes, genes belonging to octadecanoid and indole glucosinolate synthesis pathways were induced upon both generalist and specialist attack. By contrast, transcription of myrosinases, enzymes hydrolysing glucosinolates, was suppressed. The induction of the jasmonic acid synthesis pathway was strongest in Cvi, while the up-regulation of the indole glucosinolate synthesis pathway was highest in Ler, suggesting a slightly different defence strategy in these two ecotypes. Specialist and generalist infestations caused statistically significant differential regulation of 60 genes in Ws and 21 in Cvi. Among these were jasmonic acid and tryptophan synthesis pathway enzymes, and pathogenesis related protein (PR1). Insect no-choice experiments revealed lowered fitness of B. brassicae on Ler and Cvi in comparison to Ws, but no ecotype-dependent change in fecundity of M. persicae. Targeted studies employing constructs of GUS reporter gene under the control of promoters from CYP79B2 and CYP79B3 genes showed insect-specific induction of the indole glucosinolates synthesis pathway.


Assuntos
Afídeos/fisiologia , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , RNA Mensageiro/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA