Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nutrients ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432497

RESUMO

Nature may have the answer to many of our questions about human, animal, and environmental health. Natural bioactives, especially when harvested from sustainable plant and food sources, provide a plethora of molecular solutions to nutritionally actionable, chronic conditions. The spectrum of these conditions, such as metabolic, immune, and gastrointestinal disorders, has changed with prolonged human life span, which should be matched with an appropriately extended health span, which would in turn favour more sustainable health care: "adding years to life and adding life to years". To date, bioactive peptides have been undervalued and underexploited as food ingredients and drugs. The future of translational science on bioactive peptides-and natural bioactives in general-is being built on (a) systems-level rather than reductionist strategies for understanding their interdependent, and at times synergistic, functions; and (b) the leverage of artificial intelligence for prediction and discovery, thereby significantly reducing the time from idea and concept to finished solutions for consumers and patients. This new strategy follows the path from benefit definition via design to prediction and, eventually, validation and production.


Assuntos
Inteligência Artificial , Alimentos Especializados , Animais , Humanos , Peptídeos/metabolismo
2.
Nutrients ; 13(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34836088

RESUMO

BACKGROUND: While the bioavailability of cocoa polyphenols, particularly of the monomer (-)-epicatechin, has been investigated after a single-dose intake, the effect of sustained cocoa consumption on the metabolic profile of the structurally related (-)-epicatechin metabolites (SREMs) has not been investigated. METHODS: A randomized, controlled crossover clinical trial in healthy young adults (18-40 year) was conducted to evaluate SREMs after consumption of a single-dose and after daily consumption of 1.3 g of polyphenol-rich cocoa powder for 28 days. The circulating SREMs were measured by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS: Twenty subjects (eleven males and nine females) were enrolled. The SREMs concentrations increased to 1741 ± 337 nM after a single-dose and to 1445 ± 270 nM after sustained supplementation. Sulfate conjugates showed higher levels in females (p < 0.05). The epicatechin-3'-glucuronide (E3'G) and epicatechin-3'-sulfate (E3'S) were the most abundant metabolites in all subjects. A high intra-individual correlation (r = 0.72, p < 0.001) between SREMs concentrations after single-dose and sustained supplementation was observed. The antioxidant capacity of plasma did not change in response to the intervention and was not correlated with any of the SREMs. CONCLUSION: The individual SREMs profile and concentrations after a 28-day supplementation are comparable to those after a single dose.


Assuntos
Catequina/sangue , Chocolate , Suplementos Nutricionais , Ingestão de Alimentos/fisiologia , Polifenóis/administração & dosagem , Adolescente , Adulto , Disponibilidade Biológica , Catequina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas em Tandem , Adulto Jovem
3.
FASEB J ; 33(4): 4660-4674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30589571

RESUMO

In pancreatic ß-cells, mitochondria generate signals that promote insulin granule exocytosis. Here we study how lysine acetylation of mitochondrial proteins mechanistically affects metabolism-secretion coupling in insulin-secreting cells. Using mass spectrometry-based proteomics, we identified lysine acetylation sites in rat insulinoma cell line clone 1E cells. In cells lacking the mitochondrial lysine deacetylase sirtuin-3 (SIRT3), several matrix proteins are hyperacetylated. Disruption of the SIRT3 gene has a deleterious effect on mitochondrial energy metabolism and Ca2+ signaling. Under resting conditions, SIRT3 deficient cells are overactivated, which elevates the respiratory rate and enhances calcium signaling and basal insulin secretion. In response to glucose, the SIRT3 knockout cells are unable to mount a sustained cytosolic ATP response. Calcium signaling is strongly reduced and the respiratory response as well as insulin secretion are blunted. We propose mitochondrial protein lysine acetylation as a control mechanism in ß-cell energy metabolism and Ca2+ signaling.-De Marchi, U., Galindo, A. N., Thevenet, J., Hermant, A., Bermont, F., Lassueur, S., Domingo, J. S., Kussmann, M., Dayon, L., Wiederkehr, A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells.


Assuntos
Sinalização do Cálcio/fisiologia , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Mitocôndrias/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Metabolismo Energético/fisiologia , Glucose/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Sirtuína 3/metabolismo , Espectrometria de Massas em Tandem
4.
Mol Nutr Food Res ; 62(24): e1800034, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30035846

RESUMO

Epidemiological studies have consistently demonstrated that environmental exposures in early life are associated with later-life health status and disease susceptibility. Epigenetic modifications, such as DNA methylation, have been suggested as potential mechanisms linking the intrauterine environment with offspring health status. The present systematic review compiles peer-reviewed randomized controlled trials assessing the impact of maternal nutritional interventions on DNA methylation patterns of the offspring. The results of the included trials are consistent with micronutrient supplementation not significantly affecting offspring tissue DNA methylation patterns, yet subgrouping by sex, BMI, and smoking status increased the significance of nutritional supplementation on DNA methylation. Maternal BMI and smoking status as well as offspring sex were factors influencing offspring DNA methylation responsiveness to nutritional interventions during pregnancy. Future research should aim at assessing the impact of nutritional interventions on DNA methylation patterns of neonates comparing single versus multi-micronutrient supplementation, within populations having high versus low baseline nutritional statuses.


Assuntos
Metilação de DNA , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Materna , Epigênese Genética , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Humanos , Recém-Nascido , Micronutrientes/uso terapêutico , Estado Nutricional , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitamina B 12/uso terapêutico
5.
World J Gastroenterol ; 23(20): 3643-3654, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28611517

RESUMO

AIM: To identify metabolic signatures in urine samples from healthy and inflammatory bowel disease (IBD) children. METHODS: We applied liquid chromatography and gas chromatography coupled to targeted mass spectrometry (MS)-based metabolite profiling to identify and quantify bile acids and host-gut microbial metabolites in urine samples collected from 21 pediatric IBD patients monitored three times over one year (baseline, 6 and 12 mo), and 27 age- and gender-matched healthy children. RESULTS: urinary metabolic profiles of IBD children differ significantly from healthy controls. Such metabolic differences encompass central energy metabolism, amino acids, bile acids and gut microbial metabolites. In particular, levels of pyroglutamic acid, glutamic acid, glycine and cysteine, were significantly higher in IBD children in the course of the study. This suggests that glutathione cannot be optimally synthesized and replenished. Whilst alterations of the enterohepatic circulation of bile acids in pediatric IBD patients is known, we show here that non-invasive urinary bile acid profiling can assess those altered hepatic and intestinal barrier dysfunctions. CONCLUSION: The present study shows how non-invasive sampling of urine followed by targeted MS-based metabonomic analysis can elucidate and monitor the metabolic status of children with different GI health/disease status.


Assuntos
Ácidos e Sais Biliares/urina , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/urina , Metaboloma , Urina/química , Adolescente , Antropometria , Composição Corporal , Estudos de Casos e Controles , Criança , Colite Ulcerativa/urina , Doença de Crohn/urina , Cisteína/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Ácido Glutâmico/urina , Glutationa/urina , Glicina/urina , Humanos , Inflamação , Masculino , Metabolômica , Interações Microbianas , Fenótipo , Ácido Pirrolidonocarboxílico/urina , Transdução de Sinais
6.
Alzheimers Res Ther ; 9(1): 43, 2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623948

RESUMO

BACKGROUND: Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. METHODS: Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/ß-Amyloid 1-42 peptide chain [Aß1-42] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. RESULTS: The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aß1-42, tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers. CONCLUSIONS: We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/epidemiologia , Compostos Inorgânicos de Carbono/líquido cefalorraquidiano , Carbono/sangue , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/epidemiologia , Homocisteína/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Transtornos Cognitivos/diagnóstico , Comorbidade , Feminino , Humanos , Masculino , Prevalência , Fatores de Risco , Suíça/epidemiologia
7.
J Nutr Biochem ; 43: 98-106, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282585

RESUMO

Polyunsaturated fatty acids (PUFA) contained in fish oil (FO) are ligands for peroxisome proliferator-activated receptors (PPAR) that may induce changes in cardiometabolic markers. Variation in PPAR genes may influence the beneficial responses linked to FO supplementation in young adults. The study aimed to analyze the effect of FO supplementation on glucose metabolism, circulating lipids and inflammation according to PPARα L162V and PPARγ2 P12A genotypes in young Mexican adults. 191 young, non-smoking subjects between 18 and 40 years were included in a one-arm study. Participants were supplemented with 2.7 g/day of EPA+DHA, during six weeks. Dietary analysis, body composition measurements and indicators for glucose metabolism, circulating lipids, and markers for inflammation were analyzed before and after intervention. An overall decrease in triglycerides (TG) and an increase in HS-ω3 index were observed in all subjects [-4.1 mg/dL, (SD:±51.7), P=.02 and 2.6%, (SD:±1.2), P<.001 respectively]. Mean fasting insulin and glycated hemoglobin (HbA1c%) were significantly decreased in all subjects [-0.547mlU/L, (SD:±10.29), P=.034 and-0.07%, (SD:±0.3), P<.001 respectively], whereas there was no change in body composition, fasting glucose, adiponectin and inflammatory markers. Subjects carrying the minor alleles of PPARα L162V and PPARγ2 P12A had higher responses in reduction of TG and fasting insulin respectively. Interestingly, doses below 2.7 g/day (1.8 g/day) were sufficient to induce a significant reduction in fasting insulin and HbA1c% from baseline (P=.019 and P<.001). The observed responses in triglycerides and fasting insulin in the Mexican population give further evidence of the importance of FO supplementation in young people as an early step towards the prevention of cardiometabolic disease.


Assuntos
Biomarcadores/sangue , Óleos de Peixe/farmacologia , Lipídeos/sangue , PPAR alfa/genética , PPAR gama/genética , Adulto , Composição Corporal/efeitos dos fármacos , Sacarose Alimentar , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Frequência do Gene , Humanos , Masculino , México , Resultado do Tratamento , Triglicerídeos/sangue
8.
Anal Bioanal Chem ; 409(1): 295-305, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757515

RESUMO

The methionine cycle is a key pathway contributing to the regulation of human health, with well-established involvement in cardiovascular diseases and cognitive function. Changes in one-carbon cycle metabolites have also been associated with mild cognitive decline, vascular dementia, and Alzheimer's disease. Today, there is no single analytical method to monitor both metabolites and co-factors of the methionine cycle. To address this limitation, we here report for the first time a new method for the simultaneous quantitation of 17 metabolites in the methionine cycle, which are homocysteic acid, taurine, serine, cysteine, glycine, homocysteine, riboflavin, methionine, pyridoxine, cystathionine, pyridoxamine, S-adenosylhomocysteine, S-adenosylmethionine, betaine, choline, dimethylglycine, and 5-methyltetrahydrofolic acid. This multianalyte method, developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), provides a highly accurate and precise quantitation of these 17 metabolites for both plasma and cerebrospinal fluid metabolite monitoring. The method requires a simple sample preparation, which, combined with a short chromatographic run time, ensures a high sample throughput. This analytical strategy will thus provide a novel metabolomics approach to be employed in large-scale observational and intervention studies. We expect such a robust method to be particularly relevant for broad and deep molecular phenotyping of individuals in relation to their nutritional requirements, health monitoring, and disease risk management.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Homocisteína/sangue , Homocisteína/líquido cefalorraquidiano , Metabolômica/métodos , Metionina/sangue , Metionina/líquido cefalorraquidiano , Espectrometria de Massas em Tandem/métodos , Ensaios de Triagem em Larga Escala/métodos , Homocisteína/metabolismo , Humanos , Técnicas de Diluição do Indicador , Limite de Detecção , Redes e Vias Metabólicas , Metionina/metabolismo , Pessoa de Meia-Idade
9.
FASEB J ; 31(3): 1028-1045, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927723

RESUMO

Mitochondria play a central role in pancreatic ß-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic ß cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to ß-cell activation.-Santo-Domingo, J., Chareyron, I., Dayon, L., Galindo, A. N., Cominetti, O., Giménez, M. P. G., De Marchi, U., Canto, C., Kussmann, M., Wiederkehr, A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic ß cells.


Assuntos
Exocitose , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Proteína Quinase C/metabolismo , Explosão Respiratória , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Glucose/metabolismo , Humanos , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligomicinas/farmacologia , Proteínas Proto-Oncogênicas c-raf/metabolismo
10.
Cell Metab ; 25(1): 102-117, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27818260

RESUMO

Diurnal oscillations of gene expression controlled by the circadian clock and its connected feeding rhythm enable organisms to coordinate their physiologies with daily environmental cycles. While available techniques yielded crucial insights into regulation at the transcriptional level, much less is known about temporally controlled functions within the nucleus and their regulation at the protein level. Here, we quantified the temporal nuclear accumulation of proteins and phosphoproteins from mouse liver by SILAC proteomics. We identified around 5,000 nuclear proteins, over 500 of which showed a diurnal accumulation. Parallel analysis of the nuclear phosphoproteome enabled the inference of the temporal activity of kinases accounting for rhythmic phosphorylation. Many identified rhythmic proteins were parts of nuclear complexes involved in transcriptional regulation, ribosome biogenesis, DNA repair, and the cell cycle and its potentially associated diurnal rhythm of hepatocyte polyploidy. Taken together, these findings provide unprecedented insights into the diurnal regulatory landscape of the mouse liver nucleus.


Assuntos
Núcleo Celular/metabolismo , Ritmo Circadiano , Fígado/metabolismo , Proteômica/métodos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Reparo do DNA , Regulação da Expressão Gênica , Marcação por Isótopo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Fosfoproteínas/metabolismo , Fosforilação , Poliploidia , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Ribossomos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Int J Mol Sci ; 17(8)2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27529220

RESUMO

BACKGROUND: Growth failure and delayed puberty are well known features of children and adolescents with inflammatory bowel disease (IBD), in addition to the chronic course of the disease. Urinary metabonomics was applied in order to better understand metabolic changes between healthy and IBD children. METHODS: 21 Pediatric patients with IBD (mean age 14.8 years, 8 males) were enrolled from the Pediatric Gastroenterology Outpatient Clinic over two years. Clinical and biological data were collected at baseline, 6, and 12 months. 27 healthy children (mean age 12.9 years, 16 males) were assessed at baseline. Urine samples were collected at each visit and subjected to ¹H Nuclear Magnetic Resonance (NMR) spectroscopy. RESULTS: Using ¹H NMR metabonomics, we determined that urine metabolic profiles of IBD children differ significantly from healthy controls. Metabolic differences include central energy metabolism, amino acid, and gut microbial metabolic pathways. The analysis described that combined urinary urea and phenylacetylglutamine-two readouts of nitrogen metabolism-may be relevant to monitor metabolic status in the course of disease. CONCLUSION: Non-invasive sampling of urine followed by metabonomic profiling can elucidate and monitor the metabolic status of children in relation to disease status. Further developments of omic-approaches in pediatric research might deliver novel nutritional and metabolic hypotheses.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/urina , Adolescente , Criança , Colite Ulcerativa/metabolismo , Colite Ulcerativa/urina , Doença de Crohn/metabolismo , Doença de Crohn/urina , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica
12.
Pharmacogenomics ; 16(14): 1527-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26401575

RESUMO

The 7th Santorini Conference was held in Santorini, Greece, and brought together 200 participants from 40 countries in several continents, including Europe, USA but also Japan, Korea, Brazil and South Africa. The attendees had the opportunity to: listen to 60 oral presentations; participate in two lunch symposia; look at 103 posters, which were divided in two groups ('systems medicine and environment' and 'pharmacogenomics and cancer') and attend a dedicated exhibition with six companies. The meeting was organized by the Institut National de la Santé et de la Recherche Médicale (INSERM) U1122; IGE-PCV and by 'Biologie Prospective' with the collaboration of the European Society of Pharmacogenomics and Theranostics (ESPT), under the auspices of international organizations (e.g., International Federation of Clinical Chemistry and Laboratory medicine [IFCC], European Federation of Clinical Chemistry and Laboratory Medicine [EFLM], European Diagnostic Manufacturers Association [EDMA], Federation of European Pharmacological Societies [EPHAR], European Science Foundation [ESF]). The 3 days of the conference stimulated intensive discussions on systems biology and the influence of omics technologies on personalized health. Sixty speakers were invited or selected from early abstracts and gave presentations on the following topics: From systems biology to systems medicine/pharmacology; Omics/translating pharmacogenomics/proteomic biomarkers/metabolomics; Human nutrition and health/personalized medicine. We are summarizing here the main topics and presentations, according to the successive sessions.


Assuntos
Medicina de Precisão , Medicina Ambiental , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacogenética
13.
J Proteome Res ; 11(10): 5081-9, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22946824

RESUMO

Relative quantification of peptides and proteins with isobaric tags such as iTRAQ or TMT is commonly used in comparative quantitative proteomics based on tandem mass spectrometry (MS/MS). Nonetheless, isobaric tagging inherently suffers from the cofragmentation/interference phenomenon that may compromise the quality of the quantitative data. An MS(3) acquisition mode has been recently proposed to address this issue. Because of the additional ion isolation and fragmentation step, the MS(3) acquisition mode significantly alleviates this interference effect. However, MS(3) acquisition exhibits a lower sensitivity and a higher duty cycle, both of which reduce the number of identified and quantified proteins. In the present study, we evaluated the combination of gas-phase fractionation (GPF) and MS(3) acquisition modes to optimize both identification and quantification of tryptic peptides labeled with TMT using a hybrid ion trap-orbitrap (LTQ-OT) instrument. An interference model was used where TMT-labeled human plasma proteolytic digests were spiked with TMT-labeled E. coli proteolytic digests. When combined with GPF, the MS(3) acquisition mode was compared with MS(2) modes such as high-energy collision dissociation (HCD) and combined collision-induced dissociation (CID)/HCD. We demonstrated the benefit of using both GPF and MS(3) to analyze tryptic peptides labeled with TMT in terms of quantification precision and accuracy as well as proteome coverage. We further explored parameters such as the influence of automatic gain control and additional MS(3) scans. The TMT-GPF-MS(3) workflow was shown to be a powerful alternative for quantitative proteomic studies that offers improved identification/quantification accuracy and enhanced proteome coverage without the need for extensive sample fractionation before MS analysis.


Assuntos
Proteínas Sanguíneas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Proteínas Sanguíneas/isolamento & purificação , Cromatografia por Troca Iônica , Cromatografia de Fase Reversa , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/normas , Células HeLa , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Mapeamento de Peptídeos/métodos , Mapeamento de Peptídeos/normas , Proteólise , Padrões de Referência , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Tripsina/química
14.
Prog Mol Biol Transl Sci ; 108: 51-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22656373

RESUMO

Proteins are needed for the development and sustainability of life. They are the molecular machines and building blocks in the human body that drive or exert most biological functions and confer structure and function to cell and tissue architecture. Dietary proteins provide essential amino acids and complement lipid and carbohydrate as a major source of energy. Therefore, humans must consume a sufficient amount and quality of proteins to stay healthy and avoid deficiencies. Even with a reasonable amount of intake, variability in protein consumption can result in measurable health consequences in specific conditions. This said, dietary protein delivers more than energy and building blocks to the human body: the pools of body, tissue, and cell proteins, peptides, and amino acids are under complex metabolic control, resulting in a highly dynamic protein turnover, that is, the interplay between synthesis and degradation. Proteins also contain peptide sequences that can be interpreted as bioactive precursors which can be liberated upon digestion to exert biological functions locally (e.g., in the gut) or systemically (i.e., via the bloodstream). In this chapter, we will first review holistic readouts of protein intake assessed by omics technologies such as gene expression, proteomics, and metabolite profiling. Second, we will look at protein benefits beyond macronutrient supply and describe how to generate, analyze, and leverage bioactive peptides. In the third part, we will discuss protein turnover as tackled by proteomics tools that allow single-protein resolution at proteome-wide scale.


Assuntos
Proteínas Alimentares/administração & dosagem , Nutrigenômica , Peptídeos/metabolismo , Proteínas/metabolismo , Animais , Proteínas Alimentares/metabolismo , Humanos , Camundongos
15.
Food Chem ; 132(3): 1333-1339, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29243619

RESUMO

The present paper describes the assessment of non-covalent binding (NCB) between milk proteins and polyphenols and its correlation with the physicochemical parameters of proteins. A method based on ultrafiltration and liquid chromatography-tandem mass spectrometry was used to analyse free and non-covalently bound polyphenols (ligands) in mixtures with major milk proteins. Binding strength values of individual polyphenols were normalised to those obtained with quercitrin (quercetin-3-O-rhamnoside), used as a reference compound. NCB data acquired by experiments at pH 6.6 without any preliminary protein denaturation were correlated with the physicochemical parameters of ligands and proteins. Unsupervised multivariate analysis revealed that NCB of proteins clustered according to their family (caseins separated from albumins). Based on this model, a predictive relationship was observed between protein-polyphenol binding strength and primary/secondary structure parameters of the proteins e.g. number of charges, proline residues and extended strand. These results confirm that, under the investigated experimental conditions, the NCB between polyphenols and protein mixtures can be predicted and optimised based on the molecular structures.

16.
J Proteome Res ; 10(4): 1558-70, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21410266

RESUMO

Allergy is an immunological disorder of the upper airways, lung, skin, and the gut with a growing prevalence over the last decades in Western countries. Atopy, the genetic predisposition for allergy, is strongly dependent on familial inheritance and environmental factors. These observations call for predictive markers of progression from atopy to allergy, a prerequisite to any active intervention in neonates and children (prophylactic interventions/primary prevention) or in adults (immunomodulatory interventions/secondary prevention). In an attempt to identify early biomarkers of the "atopic march" using minimally invasive sampling, CD4+ T cells from 20 adult volunteers (10 healthy and 10 with respiratory allergies) were isolated and quantitatively analyzed and their proteomes were compared in and out of pollen season (± antigen exposure). The proteome study based on high-resolution 2D gel electrophoresis revealed three candidate protein markers that distinguish the CD4+ T cell proteomes of normal from allergic individuals when sampled out of pollen season, namely Talin 1, Nipsnap homologue 3A, and Glutamate-cysteine ligase regulatory protein. Three proteins were found differentially expressed between the CD4+ T cell proteomes of normal and allergic subjects when sampled during pollen season: carbonyl reductase, glutathione S-transferase ω 1, and 2,4-dienoyl-CoA reductase. The results were partly validated by Western blotting.


Assuntos
Alérgenos/imunologia , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/imunologia , Pólen/imunologia , Proteômica/métodos , Rinite Alérgica Sazonal/imunologia , Adulto , Feminino , Humanos , Hipersensibilidade/imunologia , Dados de Sequência Molecular , Proteoma/análise , Adulto Jovem
17.
Eur J Nutr ; 50(7): 575-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21212969

RESUMO

BACKGROUND: Tea is an infusion of the leaves of the Camellia sinensis plant and is the most widely consumed beverage in the world after water. Green tea contains significant amounts of polyphenol catechins and represents a promising dietary component to maintain health and well-being. Epidemiological studies indicate that polyphenol intake may have potential health benefits, such as, reducing the incidence of coronary heart disease, diabetes and cancer. While bioavailability of green tea bioactives is fairly well understood, some gaps still remain to be filled, especially the identification and quantification of conjugated metabolites in plasma, such as, sulphated, glucuronidated or methylated compounds. AIM OF THE STUDY: In the present study, we aimed to quantify the appearance of green tea catechins in plasma with particular emphasis on their methylated forms. RESULTS: After feeding 400 mL of green tea, 1.25% infusion to 9 healthy subjects, we found significant amounts of EC, EGC and EGCg in plasma as expected. EGC was the most bioavailable catechin, and its methylated form (4'-O-Me-EGC) was also present in quantifiable amounts. Its kinetics followed that of its parent compound. However, the relative amount of the methylated form of EGC was lower than that of the parent compound, an important aspect which, in the literature, has been controversial so far. The quantitative results presented in our study were confirmed by co-chromatography and accurate mass analysis of the respective standards. We show that the relative abundance of 4'-O-Me-EGC is ~40% compared to the parent EGC. CONCLUSION: 4'-O-Me-EGC is an important metabolite derived from catechin metabolism. Its presence in significant amounts should not be overlooked when assessing human bioavailability of green tea.


Assuntos
Antioxidantes/farmacologia , Bebidas , Catequina/análogos & derivados , Extratos Vegetais/farmacocinética , Folhas de Planta/química , Adolescente , Adulto , Disponibilidade Biológica , Camellia sinensis/química , Catequina/sangue , Catequina/farmacocinética , Estudos Cross-Over , Feminino , Glucuronidase , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/sangue , Sulfatases/metabolismo , Chá/química , Adulto Jovem
18.
Mol Cell Proteomics ; 10(3): M110.005231, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191033

RESUMO

Postnatal intestinal development is a very dynamic process characterized by substantial morphological changes that coincide with functional adaption to the nutritional change from a diet rich in fat (milk) to a diet rich in carbohydrates on from weaning. Time-resolved studies of intestinal development have so far been limited to investigation at the transcription level or to single or few proteins at a time. In the present study, we elucidate proteomic changes of primary intestinal epithelial cells from jejunum during early suckling (1-7 days of age), middle suckling (7-14 days), and weaning period (14-35 days) in mice, using a label-free proteomics approach. We show differential expression of 520 proteins during intestinal development and a pronounced change of the proteome during the middle suckling period and weaning. Proteins involved in several metabolic processes were found differentially expressed along the development. The temporal expression profiles of enzymes of the glycolysis were found to correlate with the increase in carbohydrate uptake at weaning, whereas the abundance changes of proteins involved in fatty acid metabolism as well as lactose metabolism indicated a nondiet driven preparation for the nutritional change at weaning. Further, we report the developmental abundance changes of proteins playing a vital role in the neonatal acquisition of passive immunity. In addition, different isoforms of several proteins were quantified, which may contribute to a better understanding of the roles of the specific isoforms in the small intestine. In summary, we provide a first, time-resolved proteome profile of intestinal epithelial cells along postnatal intestinal development.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/crescimento & desenvolvimento , Proteoma/metabolismo , Proteômica/métodos , Animais , Metabolismo dos Carboidratos , Bases de Dados de Proteínas , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Glicólise , Absorção Intestinal , Intestinos/enzimologia , Marcação por Isótopo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Fatores de Tempo
19.
J Chromatogr A ; 1216(47): 8362-70, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19833343

RESUMO

This article reports the development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the comprehensive quantification of flavan-3-ol and phenolic acid constituents of milk-based food products. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with the stable isotope labelled internal standards and ultrafiltration to preserve overall polyphenol composition, but to eliminate milk proteins in order to comply with LC. Reversed-phase liquid chromatography was optimized to achieve separation of 22 analytes in 8 min in order to reduce suppression effects, achieve a wide dynamic range and, most importantly, to resolve isomeric compounds. Negative-ion electrospray mass spectrometric detection and fragmentation of analytes was optimized, final transitions were selected for maximized selectivity, reliable quantification and reduction of false positives. The quantitative performance of the method was validated, the main features include: (1) range of lower limits of detection 5-15 ng/mL for flavan-3-ols, 60-100 ng/mL for procyanidins, 1-60 ng/mL for other phenolic acids, (2) lower limits of quantification 15-45 ng/mL for flavan-3-ols, 200-300 ng/mL for procyanidins, 3-200 ng/mL for other phenolic acids, (3) averaged intra-day precision 9.5%, (4) calibrated range 60-300,000 ng/mL for flavan-3-ols, 900-900,000 ng/mL for procyanidins, 9-225,000 ng/mL for other phenolic acids, (5) averaged accuracy 99.5%. Applications for yoghurt and ice-cream products are given. The presented data suggest that this method will help to better characterize the polyphenol composition of milk-based food products for quality control, assessment of dietary intake and for polyphenol bioavailability/bioefficacy studies.


Assuntos
Cromatografia Líquida/métodos , Laticínios/análise , Flavonoides/análise , Hidroxibenzoatos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Isótopos de Carbono , Cinamatos/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Nutrition ; 25(11-12): 1085-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19665868

RESUMO

Apart from the air we breathe, food is the only physical matter we take into our body during our life. Nutrition exhibits therefore the most important life-long environmental impact on human health. Food components interact with our body at system, organ, cellular, and molecular levels. These dietary components come in complex mixtures, in which not only the presence and concentrations of a single compound but also interactions of multiple compounds determine ingredient bioavailability and bioefficacy. Modern nutritional and health research focuses on promoting health, preventing or delaying the onset of disease, and optimizing performance. Deciphering the molecular interplay between food and health requires therefore holistic approaches because nutritional improvement of certain health aspects must not be compromised by deterioration of others. In other words, in nutrition, we have to get everything right. Proteomics is a central platform in nutrigenomics that describes how our genome expresses itself as a response to diet. Nutrigenetics deals with our genetic predisposition and susceptibility toward diet and helps stratify subject cohorts and discern responders from non-responders. Epigenetics represent DNA sequence-unrelated biochemical modifications of DNA itself and DNA-binding proteins and appears to provide a format for life-long or even transgeneration imprinting of metabolism. Proteomics in nutrition can identify and quantify bioactive proteins and peptides and addresses questions of nutritional bioefficacy. In this review, we focus on these latter aspects, update the reader on technologic developments, and review major applications.


Assuntos
Dieta , Nutrigenômica , Ciências da Nutrição , Proteínas/análise , Proteômica , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Peptídeos/análise , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA